Knowledge of the dosimetric characteristic of the MLC-equipped accelerators is very important in clinical practice. But not much data are available on small fields dosimetry where "scalloping" effects at the edge of a field can bring significant contribution to the whole field and physicians can face a major dilemma trying to decide whether they can use a field with an MLC-defined shape instead of a custom made Cerrobend block. In the present study photon beams of 22 and 6 MV are used from a Philips SL-25 accelerator to study the ratio of areas (A) and penumbra effect for diamond shape of 6x6 and 10x10 fields. Isodose lines of 90, 80, 20, and 10 % at d<sub>max</sub>, 5 cm, and 10 cm depth in water are recorded and analyzed. It was shown that a MLC-defined field gives a smaller ratio of areas compared with a custom made blocked field. As expected, this effect is larger for a smaller field. A maximum difference of 30% for A 90/10 and 23 % for A 80/20 is found for 6 MV beam between MLC and custom made block for 6x6 field and dmax. This difference becomes smaller with energy and depth. The difference in penumbras between two methods of defining the field increases both with an increase in field size and energy of a beam and decreases with depth. The conclusion from this study is that physicians have to be cautious when using small fields defined by MLC close to critical structures.