A multihole diverging photon Cerrobend collimator for megavoltage energies was used to measure water transmission values at different locations in a 20x20 cm field size at 100 cm SAD. The transmission curves in water were measured at 25 locations of the 20x20 field, where each point of calculation was separated by 5 cm from its nearest neighboring calculation points. Each transmission value was attained using a 0.3175 cm diameter (0.079 cm^2 area) hole. The measured transmission curve is given by the expression $T(X) = I(X)/I(0) = \exp(-\mu_{eff} \cdot X)$, where X is the thickness of water, μ_{eff} is the effective linear attenuation coefficient in water, and I(X) and I(0) are the transmission readings for water thickness X and 0, respectively. From this transmission curve, the zero field size TMR was calculated as TMR0(d) = exp[- μ_{eff} •(d - d_m)], where μ_{eff} is the effective linear attenuation coefficient, d_m is the depth of maximum dose or 1.2 cm for 4 MV and 3.0 cm for 15 MV, and d is the depth of interest. In this notation, X = d and TMR0(d) = $T(X)/T(d_m)$. The water HVL varied from 12.0 cm to 12.7 cm for the 4 MV field and 17.7 cm to 20.9 cm for the 15 MV field.