3D dosimetry techniques are needed to measure complex dose distributions produced by conformal radiation therapy procedures. This requirement is fulfilled by the recently introduced BANGTM polymer gel dosimetry technique, which is based on radiation-induced polymerization of acrylic monomers in a rigid gel.¹ In the polymerized regions of the gel, both the water proton NMR relaxation rates and the optical absorbance increase linearly with the absorbed radiation dose. Stacks of MRI-derived 2D dose maps have been successfully used to reconstruct 3D dose distributions in the gel.¹ Also, optical laser CT scanning was recently proposed as a potentially more convenient and less expensive alternative means of measuring dose distributions in irradiated BANGTM polymer gels.^{2,3} We have built a compact PC-based bench-top laser scanner for imaging BANGTM gels, and obtained very promising results in applications such as stereotactic radiosurgery.⁴ In this presentation the optical measurements of dose distributions produced in BANGTM gels by typical megavoltage x-ray and electron fields are compared with conventional dosimetry data, and the current limitations and further developments of the optical CT/ BANGTM gel dosimetry are discussed.

This work has been supported by a grant No. R44CA65209 from the National Cancer Institute.

References:

- 1. Maryanski et al., Med. Phys. 23, 699 (1996)
- 2. Maryanski et al., Med. Phys. 23, 1069 (1996)
- 3. Gore et al., Phys. Med. Biol. 41, 2695 (1996)
- 4. Knisely et al., in: Radiosurgery 1997, Vol. 2, 251 (Basel-Karger 1998)