2019 AAPM Annual Meeting
Back to session list

Session Title: Functional Treatment Planning
Question 1: Spectroscopic MRI complements conventional MRI because:
Reference:Cordova et al, 'Whole-brain spectroscopic MRI biomarkers identify infiltrating margins in glioblastoma patients.' Neuro Oncol. 2016 Aug;18(8):1180-9. doi: 10.1093/neuonc/now036.
Choice A:It has a lower voxel size, showing anatomy at a higher resolution
Choice B:Is better in defining tumor infiltration
Choice C:Improves delineation of critical structures
Choice D:Enables real-time visualization of dose deposition in the patient
Question 2: Preferred registration of sMRI to simulation CT is:
Reference:Gurbani et al,'The Brain Imaging Collaboration Suite (BrICS): A Cloud Platform for Integrating Whole-Brain Spectroscopic MRI into the Radiation Therapy Planning Workflow' Tomography. 2019 Mar;5(1):184-191.
Choice A:Rigid registration
Choice B:Deformable registration
Choice C:No registration is needed
Choice D:Depends on the metabolic abnormality location
Question 3: Hepatobiliary iminodiacetic acid (HIDA) scan is a type of:
Reference:Lambie, H., A. M. Cook, A. F. Scarsbrook, J. P. A. Lodge, P. J. Robinson, and F. U. Chowdhury. "Tc99m-hepatobiliary iminodiacetic acid (HIDA) scintigraphy in clinical practice." Clinical radiology 66, no. 11 (2011): 1094-1105.
Choice A:Magnetic resonance imaging (MRI)
Choice B:Nuclear Medicine imaging
Choice C:Ultrasound imaging
Choice D:Computed tomography (CT) imaging
Choice E:None of the above
Question 4: In this presentation, FLIGHT is:
Reference:Long, David E., Mark Tann, Ke Colin Huang, Gregory Bartlett, James O. Galle, Yukie Furukawa, Mary Maluccio, John A. Cox, and Susannah G. Ellsworth. "Functional liver image guided hepatic therapy (FLIGHT) with hepatobiliary iminodiacetic acid (HIDA) scans." Practical radiation oncology 8, no. 6 (2018): 429-436.
Choice A:A new website for airline ticket booking
Choice B:Conventional 3D conformal treatment
Choice C:Functional image guided therapy for different treatment sites
Choice D:A planning technique for liver treatment using functional images
Choice E:None of the above
Question 5: All of the following are essential components of generating 4DCT-ventilation images except.
Reference:Guerrero T, Sanders K, Castillo E, et al. Dynamic ventilation imaging from four-dimensional computed tomography. Phys Med Biol. 2006;51(4):777-791.
Choice A:4DCT data
Choice B:Deformable image registration
Choice C:Contrast CT images
Choice D:Lung segmentation
Question 6: Which of these metrics provided the best prediction of radiation pneumonitis.
Reference:Vinogradskiy Y, Castillo R, Castillo E, et al. Use of 4-Dimensional Computed Tomography-Based Ventilation Imaging to Correlate Lung Dose and Function With Clinical Outcomes. International Journal of Radiation Oncology Biology Physics. 2013;86(2):366-371.
Choice A:Dose metrics
Choice B:Functional imaging metrics
Choice C:Metrics that combine dose and functional imaging
Question 7: What are some of the motion management strategies currently being utilized clinically for proton therapy?
Reference:Consensus Guidelines for Implementing Pencil-Beam Scanning Proton Therapy for Thoracic Malignancies on Behalf of the PTCOG Thoracic and Lymphoma Subcommittee, Chang JY, Zhang X, Knopf A, et al. International Journal of Radiation Oncology, Biology, Physics. 2017; 99(1):41-50.
Choice A:breath-hold
Choice B:phase gating
Choice C:using repainting machine models
Choice D:all of the above
Question 8: What is/are the factor/s that will have the most impact on the motion interplay effect in spot scanning proton therapy?
Reference:Motion Interplay as a Function of Patient Parameters and Spot Size in Spot Scanning Proton Therapy for Lung Cancer, Grassberger C, Dowdell S, Lomax A, et al. International Journal of Radiation Oncology*Biology*Physics. 2013; 86(2):380-386; On the interplay effects with proton scanning beams in stage III lung cancer. ; Li Y, Kardar L, Li X, et al. Medical Physics. 2014; 41(2):021721.
Choice A:number of beam angles
Choice B:spot size
Choice C:particle accelerator type
Choice D:number of treatment fractions
Choice E:all of the above
Question 9: Clear benefits to utilization of quantitative imaging for tumor target definition include.
Reference:Press RH, Shu HG, Shim H, Mountz JM, Kurland BF, Wahl RL, Jones EF, Hylton NM, Gerstner ER, Nordstrom RJ, Henderson L, Kurdziel KA, Vikram B, Jacobs MA, Holdhoff M, Taylor E, Jaffray DA, Schwartz LH, Mankoff DA, Kinahan PE, Linden HM, Lambin P, Dilling TJ
Choice A:better image resolution
Choice B:expert knowledge of the disease process
Choice C:utilization of algorithmically segmented quantitative imaging
Choice D:improved integration into treatment planning objectives
Question 10: Barriers to Implementing quantitative imaging in radiation therapy treatment planning include all of the following except:
Reference:Press RH, Shu HG, Shim H, Mountz JM, Kurland BF, Wahl RL, Jones EF, Hylton NM, Gerstner ER, Nordstrom RJ, Henderson L, Kurdziel KA, Vikram B, Jacobs MA, Holdhoff M, Taylor E, Jaffray DA, Schwartz LH, Mankoff DA, Kinahan PE, Linden HM, Lambin P, Dilling TJ, Rubin DL, Hadjiiski L, Buatti JM. The Use of Quantitative Imaging in Radiation Oncology: A Quantitative Imaging Network (QIN) Perspective. Int J Radiation Onc Bio Physics. 2018 Nov 15;102(4):1219-1235. doi: 10.1016/j.ijrobp.2018.06.023. Epub 2018 Jun 30. Review. PMID: 29966725
Choice A:Harmonization of imaging protocols
Choice B:Vendor specific images reconstruction differences
Choice C:Increased time required for segmenting targets
Choice D:Physician acceptance of algorithmically derived targets
Back to session list