2021 AAPM Virtual 63rd Annual Meeting
Back to session list

Session Title: Solid State PET in Radiology and Radiation Oncology: from SiPM to AI in the Clinic
Question 1: The optimal FDG PET/CT imaging window for assessing response and adapting chemoradiotherapy of locally advanced lung cancer is:
Reference:Bissonnette JP, Yap ML, Clarke K, Shessel A, Higgins J, Vines D, Atenafu EG, Becker N, Leavens C, Bezjak A, Jaffray DA, Sun A. Serial 4DCT/4DPET imaging to predict and monitor response for locally-advanced non-small cell lung cancer chemo-radiotherapy. Radiother Oncol. 2018 Feb;126(2):347-354. doi: 10.1016/j.radonc.2017.11.023. Epub 2017 Dec 12.
Choice A:Baseline
Choice B:<2 weeks
Choice C:2-4 weeks
Choice D:>4 weeks
Question 2: Which radiation treatment strategy is most sensitive to improvements in quantitative PET performance:
Reference:Bentzen SM. Theragnostic imaging for radiation oncology: dose-painting by numbers. Lancet Oncol. 2005 Feb;6(2):112-7
Choice A:Uniform radiation dose to anatomic target volumes
Choice B:Simultaneous integrated radiation dose boosting
Choice C:Spatially non-uniform radiation dose scaled by target voxel biological disease burden or treatment resistance
Choice D:Uniform radiation dose to functional / biological target volumes
Question 3: Advances in PET imaging are needed to improve clinical applications such as:
Reference:Koopman D, van Dalen JA, Stevens H, Slump CH, Knollema S, Jager PL. Performance of Digital PET Compared with High-Resolution Conventional PET in Patients with Cancer. J Nucl Med. 2020 Oct;61(10):1448-1454. doi: 10.2967/jnumed.119.238105. Epub 2020 Feb 14. Erratum in: J Nucl Med. 2020 Dec;61(12):1851. PMID: 32060217.
Choice A:Cancer lesion detectability
Choice B:Targeted radionuclide / radiopharmaceutical therapy assessment
Choice C:Low-dose imaging in pediatric patients
Choice D:Discrimination of cancer progression versus pseudoprogression
Choice E:All of the above.
Question 4: Silicon photo-multiplier (SiPM) used in the emerging generation solid state PET systems is an array of:
Reference:G. Bondarenko, Buzhan P, Dolgoshein B, Smirnov K. Limited Geiger Mode Microcell Photodiode: new results. Nuclear Instruments and Methods. 2000; A442: 187-92. Dennis R. Schaart. Introduction to Silicon Photomultipliers for Time-of-Flight PET. 2020. DOI:10.1007/978-3-030-43040-5_3. In book: Advances in PET (pp.27-40) P. Lecoq, S. Gundacker. SiPM applications in positron emission tomography: toward ultimate PET time-of-flight resolution. Eur. Phys. J. Plus (2021) 136:292; https://doi.org/10.1140/epjp/s13360-021-01183-8
Choice A:Photomultiplier tubes (PMTs)
Choice B:Avalanche photodiodes (APDs)
Choice C:Single-photon avalanche diodes (SPADs)
Choice D:Geiger-mode avalanche photodiodes (GM-APDs)
Choice E:b) and c)
Choice F:c) and d)
Question 5: For a large size patient with 60cm in diameter, an estimated SNR improvement of a 200ps TOF PET compared to nonTOF PET is about_______which is______ fold compared to the SNR improvement of a 500ps TOF PET.
Reference:Karp JS. Surti S, Daube-Witherspoon ME and Muehllehner G. Advances in Time-Of-Flight PET. Phys Med, 32(1): 12-22. Budinger TF. Time-of-Flight Positron Emission Tomography - Status Relative to Conventional PET. J Nucl Med. 1983;24(1):73–76.
Choice A:3.0 and 7.5
Choice B:20.0 and 8.0
Choice C:4.5 and 2.8
Choice D:4.5 and 1.6
Question 6: A 2-meter total body TOF PET system may provide gains of about________fold in sensitivity for wholebody PET applications compared to a conventional 20-cm-axial FOV PET scanner?
Reference:Ramsey D Badawi, Hongcheng Shi, Pengcheng Hu, Shuguang Chen, Tianyi Xu, Patricia M Price, et al. First Human Imaging Studies with the EXPLORER Total-Body PET Scanner. J Nucl Med. 2019 Mar;60(3):299-303. doi: 10.2967/jnumed.119.226498. Vandenberghe, S., Moskal, P. & Karp, J.S. State of the art in total body PET. EJNMMI Phys 7, 35 (2020). https://doi.org/10.1186/s40658-020-00290-2.
Choice A:5
Choice B:10
Choice C:40
Choice D:100
Back to session list