Absorbed-dose-based protocols recommend calibration of clinical linear accelerators using air-filled ionization chambers for which an absorbed-dose to water calibration factor has been established in a 60Co beam. The factor k_Q in these protocols involves the ratio of the mean restricted collision mass stopping power water-to-air, which is energy dependent. For high-energy clinical photon beams, the stopping power ratio varies by up to 4%, whereas for electron beams the variation is larger. For certain insulating liquids, however, the stopping power ratio water-to-liquid shows little energy dependence. In this work the energy response of the MicroLIC, a novel liquid-filled ionization chamber being developed, was studied in 6 MV and 18 MV photon beams from a Clinac 21EX. This chamber has a nominal sensitive volume of 1.12 mm3 and is filled with isooctane. Ion recombination corrections were evaluated using the measured ionization current in Boag’s theory for general recombination in gasses. Absorbed dose was measured using a calibrated Exradin A12 chamber. The MicroLIC was cross-calibrated at polarizing voltages of + and –1000 V to correct for polarity effects. Results were compared with previous measurements done using another liquid-filled chamber (LIC 9902-mix), with a liquid composition of 60% isooctane, 40% tetramethylsilane by weight. The ratio of the average calibration factor at 18 MV to 6 MV was 0.995±0.009 for the MicroLIC. This is in reasonable agreement with the ratio of the average calibration factors for the LIC 9902-mix (1.000±0.003). These values indicate that compared to gas-filled chambers, the MicroLIC has superior energy dependence characteristics.