A radiobiological model was developed to determine dependence of 252Cf neutron relative biological effectiveness (RBE) on a variety of radiobiological parameters. The purpose for developing this model was to advance our current program towards treating patients with high dose rate 252Cf brachytherapy. Since this type of radiation has dose and dose rate dependencies that significantly differ from low-LET radiation, it is necessary to supplement existing animal experiments and clinical results with a sound radiobiological model. Parameters used in this model include both neutron and photon alpha and beta ratios, and neutron and photon doses and dose rates. We used the LQ-model, and equated total equivalent dose as $D_{T-EQ} = RBE_\gamma D_\gamma + RBE_N D_N$ with gamma- and neutron-components. While the proportion of gamma:neutron dose varies as a function of distance from the source and as a function of the material, we can start off with $D_\gamma = \frac{1}{2} D_N$ for clinical applications. This leads to:

$$D_{T-EQ} = D_\gamma + \frac{D_N}{2}.$$ Since RBE is the ratio of doses needed to achieve a given biologic effect, we define the effect as identical cell survival: $S_\gamma = S_N \Rightarrow e^{-n(\alpha_\gamma D_\gamma + \beta_\gamma D_\gamma^2)} = e^{-n(\alpha_N D_N + \beta_N D_N^2)}$ which can be simplified, $\alpha_\gamma D_\gamma + \beta_\gamma D_\gamma^2 = \alpha_N D_N + \beta_N D_N^2$, and rearranged to give $\beta_\gamma D_\gamma^2 + \alpha_\gamma D_\gamma - (\alpha_N D_N + \beta_N D_N^2) = 0$. Applying the quadratic equation $(ax^2+bx+c=0)$, the total equivalent dose may now be expressed as a function of neutron dose with high- and low-LET radiobiological parameters,

$$D_{T-EQ} = \frac{\sqrt{\alpha_\gamma^2 + 4\beta_N (\alpha_N D_N + \beta_N D_N^2)} - \alpha_\gamma}{2\beta_\gamma} + \frac{D_N}{2},$$

which permits direct derivation of the neutron RBE: $RBE_N = \frac{\sqrt{\alpha_\gamma^2 + 4\beta_N (\alpha_N D_N + \beta_N D_N^2)} - \alpha_\gamma}{2\beta_\gamma D_N}$. Using $\alpha_\gamma=0.21$, $\beta_\gamma=0.0.335$, $\alpha_N=0.71$, $\beta_N=0.078$, and $D_N=1.5$ Gy established from pre-clinical HDR 252Cf studies and teletherapy neutron sources, an RBE_N of ~ 3 was obtained.