Slide 1

NCRP Mammography Update
CE - Screen-Film Mammography 2
AAPM Montreal, July 18, 2002

Lawrence N. Rothenberg, Ph.D.
Chairman, NCRP SC-72
Department of Medical Physics
Memorial Sloan-Kettering Cancer Center
New York, NY

Slide 2

Other Members NCRP SC-72

Stephen A. Feig, M.D. (R)
Arthur G. Haus (P)
R. Edward Hendrick, Ph.D. (P)
Geoffrey R. Howe, Ph.D. (E)
Wende W. Logan-Young, M.D. (R)
John L. McCrohan, M.S. (P)
Edward A. Sickles, M.D. (R)
Martin Yaffe, Ph.D. (P)
Thomas Koval (S)
James A. Spahn (S)

E = Epidemiologist, P = Physicist, R = Radiologist, S = NCRP Staff

Slide 3

Background

Committee reconstituted to revise:

NCRP Report No. 85:
Mammography–A User’s Guide

Published in 1986
By 1991: Significant Changes

- New Low Dose Screen-Film Systems
- Data from ACR-MAP, CRCPD
- End of Xeroradiography
- New Risk & Benefit Data
- Only Dedicated Mammography Units
- New National Recommendations
- Significant New Publications
- New Technology

Revised NCRP Mammo Report

Revision Completed in 2002
Draft Report Is Currently Being Reviewed by Council
Material Presented Here Was Developed by Committee SC-72, But Has Not Yet Been Approved by NCRP

Caveat

- Report has not yet been fully reviewed by either the full NCRP Council or Critical Reviewers
- NOTHING presented represents NCRP Policy
- Final Report MIGHT be different
- Note:
 Effort to agree with ACR/MQSA Documents
Slide 7

Introduction

- Usefulness of mammography
- Usefulness of mammography for breast cancer screening
- Purpose and Scope of Report

Slide 8

Clinical Mammography

- Breast anatomy
- Viewing a mammogram
- Film identification
- Breast positioning - C.C. and M.L.O. views
- Clinical considerations
 - Grid
 - Magnification
 - AEC reliability
 - Compression
 - Technical decisions
- Double interpretation of mammograms

Slide 9

Equipment

- X-Ray Unit
- Screens
- Films
- Processing Systems
Slide 10

X-Ray Unit

- Mechanical Assembly/General
 - C-Arm
 - Locks
 - Compression
 - Image Receptor Support Device
 - Radiation Shield
 - Recording System

Slide 11

X-Ray Unit

- X-Ray Source Assembly
 - Target
 - Window
 - Filter
 - Field Coverage
 - Focal Spot
 - Resolution

Slide 12

X-Ray Unit

- X-Ray Generator
 - 3 to 10 kW
 - High Frequency generator
 - kVp Selection: 24 - 32 in 1 kV steps
- X-Ray Beam Energy and Intensity
 - kVp/100 to kVp/100+0.1 mm Al
 - 200 µC kg⁻¹ s⁻¹ at breast (28 kVp, 3 s)
Slide 13

X-Ray Unit

- Exposure Control
 - AEC: OD ± 0.12 - 2 to 6 cm
 - Detector: 3 pos, indicator, right size
 - Density Adjustment: 9 steps (10 - 15 %)
 - Post-Exposure Display
 - Back Up Timer: indicator, 250 - 600 mAs
 - Manual: 2 to 600 mAs, display, 5% to AEC

Slide 14

X-Ray Unit

- Compression Device
- Grid
 - 4:1 to 5:1, thin septa, 32 l/cm, interlock,
 - moving, carbon fiber, rigid, two sizes
- Magnification Stand

Slide 15

Screens, Films, Processing

- Screens
 - Single, thin
- Films
 - Single emulsion, silver halide & gelatin
- Processing
 - Cycle Time: 90 to 150 s
 - Temperature: 33 to 39°C
 - Chemicals, Replenishment, Agitation, Drying
Slide 16

Darkroom Processor/Maintenance
- Correct electrical current
- Correct water flow
- Darkroom air, ventilation, temperature
- Eliminate dust and artifacts
- Humidity
- Safelight illumination
- Film Storage

Slide 17

Digital X-Ray Mammography
- Detectors - spatial considerations
- Digital system designs
 - Area detectors - full field
 - Scanned beam detectors
- Display monitors
- Exposure techniques

Slide 18

Digital Mammography Applications
- Real time image display
- Post acquisition image enhancement
- Image archiving and retrieval
- Teleradiology
- Dual-energy subtraction
- Computer-aided image analysis
- Computer-aided instruction
- Future developments
Slide 19

Stereotactic Breast Biopsy

Slide 20

Image Quality

- Factors Which Affect Quality (Table)
 - Contrast
 - Subject contrast
 - Scattered, grid, compression
 - Receptor contrast
 - Spatial resolution
 - Motion, Geometry, Image receptor
- Noise
- Artifacts
 - X-Ray Unit, Receptor, Processing, Handling

Slide 21

Dose Evaluation

- Risk Related Dose
- Dose Evaluation Procedures
- Published Data
 - Dose Recommendations
 - Dose Survey Results
Assumptions: Dose Calculation

- Firm Compression
- Uniform Cross Section
- 0.5 cm Adipose Layer - Top & Bottom
- Adipose / Gland Mix:
 - 100% / 0%
 - 50% / 50%
 - 0% / 100%

f - Factors

- Adipose: 5.4 mGy/R
- Glandular: 7.9 mGy/R

Dose and Exposure vs Thickness
NCRP Mammography Update – Lawrence N. Rothenberg, Ph.D.

Slide 25

Steps: Dose Calculation

- Measure \(X_a \), Exposure In-Air at Surface
- Determine \(kV_p \) & Target Material
- Determine Compressed Breast Thickness
- Measure HVL (Type 1145 Aluminum)
- Estimate Adipose / Glandular Mix
- Look Up \((D_{gN})_{ave} \) in Table
- Calculate \((D_{g})_{ave} = (D_{gN})_{ave} \ast X_a \)

Slide 26

Dose Recommendations / Surveys

- Screen - Film with Grid
- 4.5 cm Compressed Breast
- 50% Adipose / 50% Glandular

Slide 27

Dose Recommendations:

Screen-Film with Grid

- MQSA 3 mGy
- ACR-MAP 3 mGy
- NCRP SC -72 3 mGy
- NY State 3 mGy
- California 3 mGy
Published Dose Surveys

All Facilities Screen Film with Grid

* ACR-MAP: 6265 Facilities
 - 1992: 1.27 mGy

* CDRH / MQSA: 4172 Facilities
 - First Inspection: 1.5 mGy
 - Second Inspection: 1.6 mGy

Quality Assurance

Current Status of QA in US

Essential Elements of Effective QA

Quality Administration
 - Medical Audits

Legislative Issues Relating to QA
 - OBRA: Passed 11/90, Effective 1/91
 - MQSA: Passed 10/92, Effective 10/94
 - States

Elements of a QA Program

Selection of Mammography Equipment

Selections of Screens and Films

Selection of Film Processing Conditions

Quality Control Procedures
 - ACR QC Manuals

Acceptance Testing Procedures
Slide 31

Quality Administration-Medical Audit
- How to Conduct an Audit
- Audit Results from an Expert Practice
 - Radiologist Demographics
 - Appropriation of Abnormal Interpretations
 - Biopsy Results
 - Characteristics of Breast Cancers
- How to Interpret Audit Results
- How to Use Audit Results Effectively

Slide 32

Benefits / Risks - Mammography
- Benefits
- Radiation Risk
- Benefit vs. Risk Analysis

Slide 33

Benefits: Considerations
- Mammography vs. Physical Exam
- Biases:
 - Lead Time Bias
 - Length Bias
 - Selection Bias
Slide 34

Benefits

Case-Control Studies
- Dutch
- Italian
- United Kingdom Correlation Trial

Follow-Up Studies
- BCDDP

Slide 35

Benefits: Randomized Clinical Trials

- HIP of New York
- Malmo Trial
- Stockholm Trial
- Swedish Two-County Trial
- Canadian NBSS
- Edinburgh Trial
- Meta-Analysis

Slide 36

Benefits

- Women Over 50
 - General Agreement on Benefit
 - Annual Screening Recommended
- Women 40 - 49
 - Benefits Have Been Somewhat Controversial
 - Varying Recommendations from Professional Organizations and Advisory Bodies
Randomized Controlled Trial (RCT)

The study design that most effectively removes such differences and minimizes selection bias is the Randomized Controlled Trial (RCT - sometimes Randomized Clinical Trial.) Additionally, this design is straightforward: Subjects are randomly assigned to two (or more) groups at time zero, and deaths (or adverse events) due to the target disease are counted during the time between randomization and some predetermined end of the study.

Benefits - RCT Data Including Women 40 - 49

- HIP, NY
- Malmo, Sweden
- Kopparberg, Sweden
- Ostergotland, Sweden
- Edinburgh, Scotland
- Stockholm, Sweden
- Gothenburg, Sweden
- Canadian National Breast Screening Study

<table>
<thead>
<tr>
<th>Study</th>
<th>Age at Entry</th>
<th>Vws</th>
<th>Freq (mo)</th>
<th>Rds</th>
<th>B/Up</th>
<th>Rel. Risk</th>
<th>Mort. Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIP-NY (1963-69)</td>
<td>40-64</td>
<td>2</td>
<td>12</td>
<td>A</td>
<td>18</td>
<td>0.77</td>
<td>23%</td>
</tr>
<tr>
<td>Malmo (1974-85)</td>
<td>40-49</td>
<td>1-2</td>
<td>18-24</td>
<td>N</td>
<td>12</td>
<td>0.81</td>
<td>19%</td>
</tr>
<tr>
<td>Stc (1977)</td>
<td>40-74</td>
<td>1</td>
<td>25-33</td>
<td>N</td>
<td>20</td>
<td>0.68</td>
<td>32%</td>
</tr>
<tr>
<td>Edin (1976-80)</td>
<td>40-44</td>
<td>1-2</td>
<td>24</td>
<td>A</td>
<td>14</td>
<td>0.71</td>
<td>29%</td>
</tr>
<tr>
<td>Stock (1981-85)</td>
<td>40-44</td>
<td>1</td>
<td>28</td>
<td>N</td>
<td>4</td>
<td>0.80</td>
<td>20%</td>
</tr>
<tr>
<td>Gothenburg (1982-86)</td>
<td>40-59</td>
<td>2</td>
<td>18</td>
<td>N</td>
<td>5</td>
<td>0.66</td>
<td>14%</td>
</tr>
<tr>
<td>CNBSS-2 (1980-87)</td>
<td>50-59</td>
<td>2</td>
<td>12</td>
<td>A</td>
<td>13</td>
<td>1.02</td>
<td>-2%</td>
</tr>
</tbody>
</table>
Slide 40

RCT Including Women 49 and Younger

<table>
<thead>
<tr>
<th>Study</th>
<th>Age Entry</th>
<th>Views</th>
<th>Freq (mo)</th>
<th>Risk</th>
<th>Rel. Risk (Yr)</th>
<th>Mort. Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIP-NY (1963-69)</td>
<td>40-49</td>
<td>2</td>
<td>12</td>
<td>A</td>
<td>0.77 (0.53-1.11)</td>
<td>23%</td>
</tr>
<tr>
<td>HIP-NY (1963-69)</td>
<td>40-49</td>
<td>2</td>
<td>12</td>
<td>A</td>
<td>0.76 (0.59-0.97)</td>
<td>24%</td>
</tr>
<tr>
<td>Malmo (1976-86)</td>
<td>45-49</td>
<td>1-2</td>
<td>18-24</td>
<td>N</td>
<td>0.64 (0.45-0.89)</td>
<td>36%</td>
</tr>
<tr>
<td>2Cty-K (1977-85)</td>
<td>40-49</td>
<td>1</td>
<td>24</td>
<td>N</td>
<td>0.62 (0.42-0.90)</td>
<td>35%</td>
</tr>
<tr>
<td>2Cty-O (1977-85)</td>
<td>40-49</td>
<td>1</td>
<td>24</td>
<td>N</td>
<td>0.67 (0.42-1.07)</td>
<td>29%</td>
</tr>
<tr>
<td>Edin (1979-88)</td>
<td>45-49</td>
<td>1-2</td>
<td>24</td>
<td>A</td>
<td>0.75 (0.48-1.18)</td>
<td>25%</td>
</tr>
<tr>
<td>Stock (1981-85)</td>
<td>40-49</td>
<td>1</td>
<td>28</td>
<td>N</td>
<td>0.67 (0.37-1.22)</td>
<td>33%</td>
</tr>
<tr>
<td>Goth (1982-88)</td>
<td>39-49</td>
<td>2</td>
<td>18</td>
<td>N</td>
<td>0.55 (0.31-0.96)</td>
<td>45%</td>
</tr>
<tr>
<td>CNBSS (1980-87)</td>
<td>40-49</td>
<td>2</td>
<td>12</td>
<td>A</td>
<td>1.14 (0.83-1.56)</td>
<td>-14%</td>
</tr>
</tbody>
</table>

Variations - RCT’s

- Number of Views: 1 or 2
- Screening Frequency: 12 to 28 Months
- Years of Follow Up: 10 to 18 Years
 - Still Increasing
- Clinical Breast Exam may not be included
- Relative Risk: 0.55 to 1.14
- Mortality Reduction: +45% to -14%

Successive Meta-Analyses: RCT

<table>
<thead>
<tr>
<th>Trials</th>
<th>Follow-up (Yr)</th>
<th>RR (95% CI)</th>
<th>Ref Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 + NBSS</td>
<td>5 - 7</td>
<td>1.08 (0.85-1.39)</td>
<td>1993</td>
</tr>
<tr>
<td>All 8</td>
<td>7 - 18</td>
<td>0.77 (0.71-1.18)</td>
<td>1995</td>
</tr>
<tr>
<td>All 8</td>
<td>7 - 18</td>
<td>0.80 (0.76-0.85)</td>
<td>1995</td>
</tr>
<tr>
<td>All 8</td>
<td>10.5 - 18</td>
<td>0.81 (0.71-0.95)</td>
<td>1997</td>
</tr>
</tbody>
</table>
Slide 43

Successive Meta-Analyses: RCT

<table>
<thead>
<tr>
<th>Trials (Population Based)</th>
<th>Follow-up (y)</th>
<th>RR (95% CI)</th>
<th>Ref Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>5 - 7</td>
<td>0.99 (0.74-1.32)</td>
<td>1993</td>
</tr>
<tr>
<td>All 7</td>
<td>7 - 18</td>
<td>0.76 (0.62-0.95)</td>
<td>1995</td>
</tr>
<tr>
<td>All 7</td>
<td>7 - 18</td>
<td>0.76 (0.62-0.93)</td>
<td>1996</td>
</tr>
</tbody>
</table>

Slide 44

Successive Meta-Analyses: RCT

<table>
<thead>
<tr>
<th>Trials</th>
<th>Follow-up (y)</th>
<th>RR (95% CI)</th>
<th>Ref Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Swedish</td>
<td>7 - 12</td>
<td>0.87 (0.63-1.20)</td>
<td>1993</td>
</tr>
<tr>
<td>5 Swedish</td>
<td>10 - 15</td>
<td>0.77 (0.54-1.01)</td>
<td>1996</td>
</tr>
<tr>
<td>5 Swedish</td>
<td>11.4 - 15.2</td>
<td>0.71 (0.57-0.89)</td>
<td>1997</td>
</tr>
</tbody>
</table>

Slide 45

Benefits - Meta-Analysis of RCT’s

- Relative Risk: 0.71 to 0.82
- Mortality Reduction: 18 to 29%
Slide 46

Not Everyone Accepts These Results!

Slide 47

Are the Benefits Real?

Slide 48

Cochrane Review - Denmark
Follow-up to 2000 Olsen & Götzsche Paper in Lancet: 6 Pages of Letters in Lancet 2/26/00

Risk Negligible for Diagnostic Exam of a Given Woman
Benefits and Risks Must Be Known for Screening of Asymptomatic Women

Risk Data: Radiation Exposures
- Japan A-Bomb Survivors
- Massachusetts TB Patients - Chest Fluoro
- Nova Scotia TB Patients - Chest Fluoro
- Swedish Benign Breast Disease Radiation
- Rochester Postpartum Mastitis Radiation
Risk Data - Key Results (1)
- Increased Incidence following Irradiation
- Linear Function Generally Fits Data
- Age of Exposure - Higher Risk for Younger
- Latent Period of at Least Five Years
- No Major Effect from
 - Dose Fractionation
 - Reduced Dose Rate

Risk Data - Key Results (2)
- No Evidence that Risk Returns to Bkgd
- Interaction with Other Risks
 - Relative Risk Model Chosen
- Radiation Cancers Same as Other Cancers
- Substantial Contribution to Risk Estimates for Doses below 1 Gy

Risk Negligible for Diagnostic Exam of a Given Woman
Benefits and Risks Must Be Known for Screening of Asymptomatic Women
Slide 55

Risk-Benefit: Assumptions (1)

- Natural Incidence Taken from SEER Data
- Lifetime Refers to Age 99
- Average Dose/Two Views = 3 mGy
- Incidence and Mortality from BEIR V Models Starting Five Years after Exam
- Baseline Incidence Multiplied by RR

Slide 56

Risk-Benefit: Assumptions (2)

- Benefit Modelled as % Reduction Mortality starting 2 yr after first screen and ending 15 years after last screen
- Benefit Calculated for Both Decrease in Deaths and Years of Life Saved

Slide 57

Risk-Benefit: Decrease in Deaths

<table>
<thead>
<tr>
<th>Starting Age</th>
<th>Total Cases</th>
<th>Excess Cases</th>
<th>Total Deaths</th>
<th>0%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>16,131</td>
<td>18</td>
<td>3,273</td>
<td>-4</td>
<td>528</td>
<td>792</td>
<td>1,059</td>
</tr>
<tr>
<td>45</td>
<td>15,591</td>
<td>9</td>
<td>3,207</td>
<td>-2</td>
<td>508</td>
<td>764</td>
<td>1,023</td>
</tr>
<tr>
<td>50</td>
<td>14,569</td>
<td>4</td>
<td>3,087</td>
<td>-1</td>
<td>478</td>
<td>719</td>
<td>960</td>
</tr>
<tr>
<td>55</td>
<td>13,211</td>
<td>2</td>
<td>2,910</td>
<td>0</td>
<td>436</td>
<td>656</td>
<td>876</td>
</tr>
<tr>
<td>60</td>
<td>11,610</td>
<td>0</td>
<td>2,694</td>
<td>0</td>
<td>386</td>
<td>519</td>
<td>774</td>
</tr>
<tr>
<td>65</td>
<td>9,935</td>
<td>0</td>
<td>2,457</td>
<td>0</td>
<td>328</td>
<td>418</td>
<td>638</td>
</tr>
</tbody>
</table>

100,000 Women Have Annual Screenings with Dose of 4mGy until Age 69

Excess Cases Same as Baseline Risk Only. No Benefit from Screening
Total Cases and Total Deaths Are Natural Incidence in Given Age
Risk - Benefit: Years Gained

<table>
<thead>
<tr>
<th>Starting Age</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 -55</td>
<td>9,406</td>
<td>14,152</td>
<td>18,918</td>
<td></td>
</tr>
<tr>
<td>45 -26</td>
<td>8,631</td>
<td>13,293</td>
<td>17,955</td>
<td></td>
</tr>
<tr>
<td>50 -12</td>
<td>7,540</td>
<td>11,328</td>
<td>15,122</td>
<td></td>
</tr>
<tr>
<td>55 -9</td>
<td>6,260</td>
<td>9,406</td>
<td>12,554</td>
<td></td>
</tr>
<tr>
<td>60 -6</td>
<td>4,947</td>
<td>7,427</td>
<td>9,915</td>
<td></td>
</tr>
<tr>
<td>65 -0</td>
<td>3,691</td>
<td>5,341</td>
<td>7,092</td>
<td></td>
</tr>
</tbody>
</table>

100,000 Women Have Annual Screenings with Dose of 4 mGy until Age 65

Other Breast Imaging Modalities
- Ultrasonography
- Thermography
- Transillumination
- Computed Tomography
- Magnetic Resonance Imaging
- Magnetic Resonance Spectroscopy
- Digital X-Ray Mammography

Ultrasonography
- Distinguishes Cystic from Solid masses
- Less accurate for Benign vs. Malignant
- Can not demonstrate cancers <1 cm
- Tomographic - many images needed
- High false positive for dense breasts
- Doppler does not distinguish malignant
- Not recommended for routine screening
Computed Tomography
- Can detect early cancer, but only with iodine contrast - before/after scans
- Routine scanners require computer assistance for diagnosis
- High radiation dose - entire chest must be penetrated
- High cost of exam

Magnetic Resonance Imaging
- No ionizing radiation
- Dense fibroglandular tissue imaged well
- Large and some small masses well imaged
- Spatial resolution well below screen-film
- Breast coils usually needed
- High cost of exam

Magnetic Resonance Spectroscopy
- Biochemical Differences - specific metabolic processes measured
- 31P MR Spectral Profiles
- Large Voxel Size
Slide 64

Summary and Conclusions

- Summary

DRAFT Conclusions of SC 72
Proposed to and currently being reviewed by NCRP

Slide 65

SC-72 DRAFT Conclusions

1. Mammography, in conjunction with physical examination, is the method of choice for early detection of breast cancer. Other methods should not be substituted for mammography in diagnosis or screening, but may be useful adjuncts in specific diagnostic situations.

Slide 66

SC-72 DRAFT Conclusions

2. Diagnostic mammography of symptomatic women should always be performed when indicated, utilizing recommended equipment and techniques and well-trained, knowledgeable personnel.
3. Screen-film mammography requires dedicated x-ray units, firm compression, and an x-ray spectrum produced by an appropriate combination of x-ray tube target, tube window, filtration, peak generating potential, screen-film combination, film processors, technique, and viewing conditions. Craniocaudal and mediolateral oblique views are recommended as the standard views for all types of mammography.

4. Mammographic equipment should be chosen to provide acceptable image quality at a typical average glandular dose [for a two-view examination] of 6 mGy or less for screen-film with grid for a patient having 4.5 cm thick compressed breasts of 50% adipose / 50% glandular tissue composition.

5. Image quality and appropriate dose level should be maintained by a quality assurance program conducted by a quality assurance technologist and medical physicist, involving specified periodic measurements and readjustment of all aspects of the imaging / viewing system.
6. Average glandular dose should be determined at each installation for the techniques used at representative breast thicknesses. This dose can be calculated from data supplied in this report by measuring beam quality and in-air exposure at the entrance surface of the breast.

7. Annual mammographic examinations appear to provide favorable benefit-risk ratios in terms of breast cancer mortality in women age 50 or above, if acceptable image quality and dose are maintained.

8. Results of randomized clinical trials of screening mammography for women age 40 to 49, for which 20 or more years of follow-up is available, have shown evidence of a substantial benefit in reducing mortality which exceeds any risk of radiation-induced breast cancer.