Practical Aspects of CAD Research

Assessment Methodologies for CAD

Charles E. Metz
Professor of Radiology
The University of Chicago

The six levels of diagnostic efficacy:
(Fryback & Thornbury, Med Decis Making, 1991)

1) Technical quality: MTF, NPS, H&D curve, etc.
2) Diagnostic accuracy: Agreement between diagnoses and "truth"
3) Diagnostic-thinking efficacy: Impact of Dx test on physician's thinking about each patient
4) Therapeutic efficacy: Impact of Dx test on patient management
5) Patient-outcome efficacy: Impact of Dx test on patients' health
6) Societal efficacy: Impact of Dx test on society as a whole

Why is receiver operating characteristic (ROC) analysis necessary?
... because of the limitations of other available methods for evaluating diagnostic accuracy

A pair of indices:
“Sensitivity” and “Specificity”

- Sensitivity: Probability of calling an actually-positive case “Positive”
- Specificity: Probability of calling an actually-negative case “Negative”

“Sensitivity” and “Specificity”:

- independent of disease prevalence (if Dx test is used in a constant way)
- implicitly reveal relative frequencies of FP and FN errors

Problems in comparing Dx tests in terms of Sensitivity and Specificity:

- Sensitivity and Specificity of each test depend on the particular "threshold of abnormality" adopted for that test
- Often, one test is found to have higher Sensitivity but lower Specificity than the other
Dependence of Sensitivity and Specificity on “threshold of abnormality”:

\[
\begin{array}{c|c|c}
\text{Specificity} & \text{Sensitivity} \\
\hline
0.0 & 1.0 \\
0.0 & 1.0 \\
\end{array}
\]

A curve is swept out as the “threshold of abnormality” \((t)\) is varied continuously:

An “ROC” curve

The ROC “Area Index” \((A_z)\):

\[
A_z = \begin{cases}
0.5 & \text{guessing} \\
1.0 & \text{perfect}
\end{cases}
\]

Interpretations of ROC area \((A_z)\):

- Sensitivity (TPF) averaged over all Specificities (or FPFs) — i.e., average ROC curve height
- Specificity averaged over all Sensitivities
- Probability of distinguishing correctly between a randomly selected actually-positive case and a randomly selected actually-negative case

However ...

- this global index can be misleading when curves cross and/or there is only one region of interest

Other ROC-based indices of performance

- Partial area below, or to the right of, a segment of the ROC curve (regional)
- TPF at fixed FPF or vice-versa (local)
- Expected utility at optimal operating point (local) — most meaningful but least practical

Generalized ROC analysis:

- Localization ROC (LROC) analysis
- Free-response ROC (FROC) analysis
- Alternative FROC (AFROC) analysis
Conventional ROC curves:

- Fraction of actually-positive images falsely called positive (FPF)
- Fraction of actually-negative images falsely called positive (TPF)

LROC (Localization ROC) curves:

- Images must have 0 or 1 lesion
- Curve depends on location-error tolerance

FROC (Free-response ROC) curves:

- Images can have any number of lesions
- Curve depends on location-error tolerance

AFROC (Alternative FROC) curves

- Images can have any number of lesions
- Curve depends on location-error tolerance

The “technology” of ROC analysis:

- Sampling images and readers
- Designing the experiment and collecting observer-response data
- Fitting ROC curves to the data
- Testing the statistical significance of apparent differences between ROC curve estimates

Selecting meaningful samples of cases and readers

- “Absolute measurement” vs. “Ranking” study
 - Absolute measurement: Samples must represent defined clinical populations
 - Ranking: Cases and/or readers can be selected to represent “stressful” subpopulations (e.g., subtle cases and/or expert readers)
 — Generalization of conclusions requires assumptions
- Criteria for inclusion must be explicit
 - Absolute measurement: Define populations sampled
 - Ranking: Report characteristics of cases and readers employed
Designing a study to avoid bias ...

- ... due to absence of subtle disease:
 - Before study is begun, decide criteria for “actually-positive” cases to be included

- ... due to absence of confounding cases:
 - Include clinically-encountered “actually-negative” cases with features that may degrade classifier performance (e.g., cysts in detection of breast cancer)

- ... due to absence of “truth” (verification bias):
 - Establish “truth” for — and include — difficult cases

Avoiding bias in assessments of automated classifiers ...

- ... due to training and testing on same cases:
 - Train and test classifier on different cases subsampled independently from same sample (e.g., “leave-one-out” method)
 - —> Difficult or impossible with rule-based classifiers

- ... due to misinterpretation of meaning and precision of evaluation study’s result:
 - Changing number of training cases changes both true classification accuracy and precision with which true classification accuracy (for a given number of training cases employed) can be estimated
 - Changing number of test cases changes only precision

Avoiding bias in CAD studies...

- ... from failure to consider how CAD will be used:
 - If CAD is to aid human observer, then performance of aided observer must be measured
 - —> Better computer detection scheme may not complement human observer best
 - —> Computer-human interface is crucial

- ... from failure to consider higher-level efficacy:
 - Does/will CAD change patient outcomes?
 - Is/will CAD be cost effective?
 - —> Data are needed — faith is not enough!

Practical issues in designing human observer studies

- Use a continuous or nominally continuous (“100-point”) rating scale
- Use a block design to avoid “reading-order” effects
- In clinical studies, don’t underestimate the difficulty of establishing “truth” without introducing bias

Current controversies:

- Advantages/disadvantages of discrete vs. continuous or nominally continuous (“100-point”) confidence-rating scales?

- Advantages/disadvantages of conventional ROC vs. FROC/AFROC methodology?
 - realism
 - adequacy of information obtained
 - availability of robust curve-fitting and statistical techniques
 - statistical power

The “technology” of ROC analysis:

- Sampling images and readers
- Designing the experiment and collecting observer-response data
 - Fitting ROC curves to the data
 - Testing the statistical significance of apparent differences between ROC curve estimates
ROC curve fitting

- Some functional form with adjustable parameters must be assumed for the ROC curve — usually the “binormal” model.
- The assumptions of conventional least-squares curve fitting aren’t valid here, so maximum-likelihood (ML) estimation should be used instead.
- Free software is available (listed later).

ROC curve fitting (continued)

The conventional “binormal” curve-fitting model ...

- Assumes that all ROC curves plot as straight lines on “normal deviate” axes (z_{TPF} vs. z_{FPF}).
- Equivalently, assumes that the two underlying distributions can be transformed to normal by a generally unknown transformation (“semi-parametric”).
- Has been shown valid in a broad variety of situations but ...
- Can yield inappropriate shapes when cases are few and/or when data scale is discrete and operating points are poorly-distributed (→ “proper” models).

Statistical significance tests for differences between ROC curves

Ways that “difference” can be quantified:

- Area index A_z (global)
- TPF at a given FPF (local)
- FPF at a given TPF (local)
- Partial area index (“regional”)
- Both parameters of binormal model (“bivariate”)
- Cost/Benefit (at optimal operating points)

Statistical significance tests (cont’)

Different statistical tests take different kinds of variation taken into account (and, thus, allow different generalizations):

- **Reader variation only** (a “significant” result applies to readers in general … but only to the particular cases used in the experiment)
- **Case-sample variation only** (result applies to cases in general … but only to the particular reader[s] used)
- Both (result applies to readers and cases in general)

⇒ Note: Conventional statistical tests cannot be applied directly in most situations.

Current statistical tests …

… that take only reader variation into account:

- paired or unpaired Student’s t test of differences in any index … at least in principle

Current statistical tests…

… that take only case-sample variation into account:

- non-parametric Wilcoxon/Mann-Whitney tests of differences in total ROC area [only] (Hanley & McNeil, DeLong et al.)
- non-parametric tests of differences in any index … at least in principle (Wieand et al.)
- semi-parametric tests of differences in any index … at least in principle (Metz et al.)
Current statistical tests...

... that take both sources of variation into account (and are applicable to differences in any index, at least in principle):

- semi-parametric tests (Swets & Pickett; Dorfman, Berbaum & Metz; Tolédano & Gatsonis; Obuchowski)
- bootstrapping approach (Beiden, Wagner & Campbell)

Free software for ROC analysis:

- Metz (University of Chicago; >5000 registered users)
 - ROCFIT and LABROC: fits a single ROC using the binormal model
 - INDRROC: tests difference between independent ROC estimates
 - CORROC2 and CLABROC: test diff. between correlated ROCs
 - difference in A_z
 - difference in TPF at given FPF
 - diff. in both binormal ROC curve parameters ("bivariate" test)
 - ROCKIT: integrates and extends the five programs above
- Dorfman and Berbaum (University of Iowa)
 - RSCORE2 and RSCORE4: fit a single ROC using binormal model
 - MRMC: Jackknife-ANOVA test for difference in A_z (data collected on continuous and discrete scale)

All University of Chicago software for ROC curve fitting and statistical testing can be downloaded from the World Wide Web without charge from:

http://xray.bsd.uchicago.edu/krl/roc_soft.htm

>>> Please note new URL

Current controversies:

- Best way to fit ROC curves to “degenerate” data?
 - RSCORE4 (ad hoc)
 - bigamma model (restricts curve shape too much?)
 - “proper” binormal model (computationally intensive, no statistical tests for differences so far)
 - “contaminated” binormal model (restricts curve shape too little?)
- Validity/robustness of current techniques for fitting FROC/AFROC curves and testing the statistical significance of differences thereof?
- Most appropriate index/indices for comparisons?

Relationship between ROC analysis and Cost/Benefit analysis:

- Different “operating points” on an ROC curve provide different frequencies of TP, FP, TN, and FN decisions (which depend on disease prevalence).
- If utilities can be assigned to the various kinds of correct and incorrect decisions and if prevalence is known, then the optimal operating point can be found on any ROC curve.
- The maximized utility found in this way quantifies the “value” of a diagnostic test in terms of its ROC.
- See reading list for details.

Needs for the future:

- Develop stratified-sampling methodology
- Establish validity/robustness of data-analysis techniques for free-response paradigms
 - curve fitting
 - statistical testing of differences
- Develop “MRMC” methods for statistical analysis of data from incompletely-balanced experimental designs, particularly...
 - when observers don’t read the same cases
 - when data are correlated within cases
Needs for the future (continued):

- Develop highly efficient approaches well-suited to exploratory analyses
 - Key need is to control for decision-threshold effects
 - Other biases may be acceptable if sufficiently small
- Generalize ROC analysis to handle >2 decision alternatives
 - Must provide an appropriate compromise between complexity and practicality
- Approaches proposed to date are not adequate

An incomplete list of recommended literature on ROC methodology

- **BACKGROUND:**

- **CURVE FITTING:**

- **BIAS:**
 - Swets JA. Indices of discrimination or diagnostic accuracy: their ROCs and implicit models. Psychol Bull 1986; 99: 149.

- **STATISTICS:**
 - Begg CB, Greensa RA. Assessment of diagnostic tests when disease verification is subject to selection bias. Biometrics 1983; 39: 151.
- Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1982; 143: 266.