

Jim Zagzebski Medical Physics, Radiology, Human Oncology University of Wisconsin, Madison

Recent Developments in Ultrasound Imaging

- Beam forming methods
 - 1 ½ D arrays
 - Dynamic transmit focusing
 - Zone acquisition
- Signal processing (Harmonics, codes, chirps)
- Acquisition strategies, format
 - Compound imaging; extended FOV; 3-D

All are available on commercial machines

PARTS OF AN ULTRASOUND SCANNER

1 ½ D (Matrix) Transducer

Matrix

Conventional

1 ½ D (Matrix) Transducer

- Best control over slice thickness.
- Disadvantage is lower sensitivity, especially in Doppler, color
- Available on most high frequency probes
- Available on some general purpose transducers
 - GE: M7; M12
 - Antares: C5-2; 7 MHz linear; 12 MHz linear

Dynamic Transmit Focus

4 Standard Focal Zones
Frame Rate
12 Hz

Dynamic Focal Zones
Frame Rate
24 Hz

Tom (TJ) Jedrzejewicz, Ph.D. Acuson Corporation

NTHI Impact

- Increases contrast resolution
 - Reduces body wall artifacts
 - Suppresses side lobes
- Originally (1998) only offered with low frequency probes
- Now available with most transducers in high-end machines

Coded Excitation

- High ultrasound frequencies are severely attenuated by tissue.
 - dB/cm proportional to frequency
 - Tradeoff between resolution and penetration
- Transmit pulse amplitude is limited by FDA and by safety considerations.
 - Current limit for MI = 1.9
- Solution: use a longer pulse duration?

Coded Excitation

Spatial Compounding

- Uses "beam steering" technology
- Combines scans from different angles
- Smoothes random dots called speckle
- More completely outlines interfaces that are not perpendicular to primary beam direction
- Available on most highend scanners

Extended Field of View

Principles of Extended FOV

- Motion estimation by registration of sequential images as transducer is translated;
- By co-registering common parts of the images, motion is tracked;
- Requires fast image processor for realtime viewing
- Now exists on all high end scanners

3-D Acquisition

- Motor driven scan head (Medsonics; Kretz)
- Full 2-D array (Philips Sonus 7500 cardiology)
- "Free-hand" manipulation of probe

External detection of scan plane with an electromagnetic sensor

Detection of scan plane motion from image correlations

Conclusions

- There are many emerging technologies that will impact this modality soon.
 - Offline image analysis
 - Advanced 3-D
 - Phase aberration corrections
 - Elasticity imaging
 - Contrast agent modes
 - Integration with other modalities
- Research modes
 - Access to raw echo data
 - User control of many acquisition functions