Intensity Modulated Radiation Therapy: The good, the bad, and the misconceptions.

J. M. Galvin, D.Sc.
Department of Radiation Oncology
Jefferson Medical College,
Thomas Jefferson University
Philadelphia, PA

Indications for IMRT
- When critical structure protection requires the creation of concavities in otherwise convex dose distributions
- When the combined complexity of beam orientation, need for wedges, and difficulty of finding beam weights requires computer optimization for generating an acceptable plan
- Where missing tissue complicates the planning, but physical compensators are not conveniently employed
- When it is not obvious how sharp dose gradients can be moved into a desired position

Indications for IMRT Billing
“IMRT planning is clinically indicated when highly conformal dose planning is required.”


Indications for IMRT Billing
- The target volume is irregularly shaped and in close proximity to critical structures that must be protected
- The volume of interest must be covered with narrow margins to adequately protect immediately adjacent structures
- An immediately adjacent area has been previously irradiated and abutting portals must be established with high precision

Indications for IMRT Billing
- Additional maneuvers to reduce the gross tumor volume, clinical treatment volume, or planning treatment volume margins, have proven insufficient to produce an acceptable dose distribution
- The target volume is concave and critical normal tissues are within that concavity
- Dose escalation is planned to deliver radiation dose in excess of those commonly used for similar tumors with conventional treatment

Misconception #1
- IMRT can produce dose gradients that are steeper than those obtainable with 3DCRT
- Alternative hypothesis – IMRT, through the weighting process, can put steep dose gradients exactly where they are needed
Question

- How can using a 1x1 cm beamlet sharpen a penumbra when the dose profile decreases from 80 to 20% in just a few mm?

Beamlet-based IP for IMRT
Prostate Example #1

- Fused Prostate PTV red
- Isodose Lines 75.6 Gy green
  70.0 Gy blue
  65.0 Gy yellow
  60.0 Gy red

Misconception #2

- It is ideal to have the IMRT dose distribution conform to a target(s) as tightly as possible
- Alternative hypothesis – Allowing the high-dose surface to float away from the target(s) in some regions might be desirable in terms of obtaining the best possible dose gradient for other regions

Misconception #3

- One should not use beam directions that point back on each other because this will decrease the degrees of freedom for the optimizer
- Alternative hypothesis – If you want to produce a sharp dose gradient along a particular line between a target and critical structure, you will do well to include parallel opposed fields with a common border running along that line
Misconception #4

- It is not wise to use beam directions that pass through critical structures
- Observation – All regions of the body are to some degree critical structures
- Alternative hypothesis – Choose many different beam directions and let the optimizer decide on their use in the plan because there is little price paid in this age of fast automated dose delivery

Beamlet-based IP for IMRT
Prostate Example #1

- Fused Prostate PTV red
- Isodose Lines
  - 75.6 Gy green
  - 70.0 Gy blue
  - 65.0 Gy yellow
  - 60.0 Gy red

Misconception #5

- IMRT treatment plans have a greater dose heterogeneity compared to 3DCRT plans
- Alternative hypothesis – Pushing plans to obtain the best possible dose conformity will compromise dose homogeneity
Misconception #6

- IMRT may have increased dose heterogeneity, but the high dose regions will fall within the target(s)
- Alternative hypothesis – Dose “dumping” can occur when dose constraints for non-target regions are, for various reasons, unspecified

NOMOS CORVUS SYSTEM

- Isodose
  - Green – 66 Gy
  - Light Blue – 60 Gy
  - Red – 54 Gy
  - Blue – 45 Gy
- Structures
  - Orange – Parotid
  - Red – PTV66
  - Green – PTV60
  - Blue – PTV54
  - Purple – PTV50 nodes

Is it really the intensity modulation?

- IMRT produces a high level of dose conformality that is not achievable with 3DCRT
- Alternative hypothesis – It is the high level of automation that was introduced along with IMRT that accounts for a good deal of the improvement commonly attributed to IMRT
  - It is now possible to treat with many different gantry positions with a single button push

What is wrong with current IMRT implementations?

- Too many monitor units (related to patient’s total body dose)
- Too many segments (related to MLC wear and tear, and to treatment time)
- Treatment verification is complex at best
High Monitor Units Can Lead to Increased Patient Total Body Dose

  - “Altogether, IMRT is likely to almost double the incidence of second malignancies compared to conventional radiotherapy from about 1% to 1.75% for patients surviving 10 years.”

CONCLUSIONS

- IMRT is not magic
- It is simply a highly automated version of what we have done for a long time

Aperture-based IP for IMRT - Prostate #2

- Fused Prostate PTV red
- Isodose Lines
  - 84.2 Gy blue
  - 75.6 Gy yellow
  - 73.0 Gy cyan
  - 70.0 Gy lavender
  - 60.0 Gy purple
  - 40.0 Gy orange
  - 20.0 Gy green

Aperture-based IP for IMRT - Prostate Example #2

- Fused Prostate PTV red
- Isodose Lines
  - 84.2 Gy blue
  - 75.6 Gy yellow
  - 73.0 Gy cyan
  - 70.0 Gy lavender
  - 60.0 Gy purple
  - 40.0 Gy orange
  - 20.0 Gy green

CONCLUSIONS

- IMRT is not magic
- It is simply a highly automated version of what we have done for a long time

Aperture-based IP for IMRT - Prostate Example #2

- Fused Prostate PTV red
- Isodose Lines
  - 84.2 Gy blue
  - 75.6 Gy yellow
  - 73.0 Gy cyan
  - 70.0 Gy lavender
  - 60.0 Gy purple
  - 40.0 Gy orange
  - 20.0 Gy green

Aperture-based IP for IMRT - Prostate Example #2

- Fused Prostate PTV red
- Isodose Lines
  - 84.2 Gy blue
  - 75.6 Gy yellow
  - 73.0 Gy cyan
  - 70.0 Gy lavender
  - 60.0 Gy purple
  - 40.0 Gy orange
  - 20.0 Gy green