What is different about IMRT?

Mark Langer, MD
Indiana University

Why ask the question?

- In medicine, a new method should replace a tried one only if it is shown to be superior.
 No one wants a clever doctor
- A medical action may lead to unexpected results when the tools change
 Even fewer want a cleaver doctor
- Differences in treatment allow tradeoffs in results
 Club it or Cleave it

What can be different?

- Dose distribution
 - Is it unequivocally better?
- Dose delivery
 - Is it less free of error?
- Tradeoffs in results and process
 - Can we choose among them?

How can we test the differences?

- Clinical results – desired
- Planned doses – available
- Delivered doses - coming
- Costs – who’s counting

2D → 3D
Dose distribution

Is it good to conform?

2D → 3D
Dose distribution

“Adaptive Radiotherapy”

Field Design \(\rightarrow\) Target Design

2D \(\rightarrow\) 3D
Dose distribution

More Information \(\Rightarrow\) Better Distribution

3D \(\rightarrow\) IMRT

Tailored coverage or Emperor’s New Clothes?
Questions for the Clinician

- When target extends outside the expected compartments, is coverage beneficial?
 - prevent untreatable symptomatic progression?
 - convert failure to cure
 - small amounts of disease may be chemosterilized
 - large amounts of disease more likely to fail distantly
- How does overcall of tumor extent propagate through multiple diagnostic tests? (CT,EUS,MRI,PET,MRS)
- What are the costs of changing the target?

Going off the beaten track:
As we change the shape of dose distributions, what is the difference in the amount of information required to keep treatment to a standard which tests, recognizes and corrects of sources of treatment failure?

- 2D \(\rightarrow\) 3D
- 3D \(\rightarrow\) IMRT
Is it possible to collect enough information to ascertain outcomes as a function of changes to the dose distribution or is the required data set too large or too spread out to be attained?

NTCP, TCP, EUD, DVH, mean dose, conformity index, homogeneity

<table>
<thead>
<tr>
<th>Really better or Optimal Illusion?</th>
</tr>
</thead>
<tbody>
<tr>
<td>constraints</td>
</tr>
<tr>
<td>Lung</td>
</tr>
<tr>
<td>Heart</td>
</tr>
<tr>
<td>Cord</td>
</tr>
<tr>
<td>PTV1</td>
</tr>
</tbody>
</table>

Really better or Optimal Illusion?

<table>
<thead>
<tr>
<th>constraints</th>
<th>Dose limit</th>
<th>Fraction size</th>
<th>Volume limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>>2000</td>
<td>>210</td>
<td>30%</td>
</tr>
<tr>
<td>Heart</td>
<td>>3000</td>
<td>>210</td>
<td>50%</td>
</tr>
<tr>
<td>Cord</td>
<td>>4500</td>
<td>>210</td>
<td>100%</td>
</tr>
<tr>
<td>PTV1</td>
<td>>5000</td>
<td>>180</td>
<td>100%</td>
</tr>
</tbody>
</table>

Dose Homogeneity ≥ 85%

Really better or Optimal Illusion?

- Are there steps we can take to improve the planned dose distribution?
- Does IMRT take those steps?
- When are there “miles and miles” to go in planning, and when are we on a treadmill, and can we tell the difference?

A dose formulation can be a bitter pill

New tools can yield unexpected results

Rotational Differences: A Matter of Degree

<table>
<thead>
<tr>
<th>Size of Error on anteroposterior check films</th>
<th>L-R error</th>
<th>S-I error</th>
<th>Coronal angle error</th>
</tr>
</thead>
<tbody>
<tr>
<td>#checks</td>
<td>96</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>Mean abs. value error</td>
<td>.35 cm</td>
<td>1.43 cm</td>
<td>1.6°</td>
</tr>
<tr>
<td>95th percentile error</td>
<td>.93 cm</td>
<td>1.13 cm</td>
<td>5.0°</td>
</tr>
</tbody>
</table>

CONCAVITY

- Does a concave dose distribution carry a lower tolerance to error?
- Can we measure error tolerance?
 - to rotations?
 - to translations?
- Is this an important difference?
- How should we adjust for it?
Tradeoffs

Does IMRT make new tradeoffs possible?
Can the tradeoffs be recognized?
How to choose among them?
Are there social and economic tradeoffs and should prescriptions consider them?

Delta Force or Delta Blues?

How big a difference is desired?

• Should we make small Δ changes in the face of uncertainty?
• What is a small Δ change?
 – Homogeneity relaxation?
 – D_{00}, $D_{100} \rightarrow D_{95}$ in GTV, PTV, OAR?
 – Geometric/aperture derived plans or delivery?
 – Incremental changes to treatment volumes
 – Smoothing concavities in treatment or target volumes

Effect on Minimum Tumor Dose (MTD) of 3%-7% change in allowed inhomogeneity

<table>
<thead>
<tr>
<th>Case No.</th>
<th>% contralateral lung allowed ≥ 20 Gy</th>
<th>Strict Inhomogeneity</th>
<th>Relaxed Inhomogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% contralateral lung allowed ≥ 20 Gy</td>
<td>Largest MTD inhomogeneity</td>
<td>Largest MTD inhomogeneity</td>
</tr>
<tr>
<td>1</td>
<td>35%</td>
<td>13% 63 Gy</td>
<td>13% 60 Gy</td>
</tr>
<tr>
<td>2</td>
<td>35%</td>
<td>13% 64 Gy</td>
<td>13% 60 Gy</td>
</tr>
<tr>
<td>3</td>
<td>40%</td>
<td>13% 55 Gy</td>
<td>13% 50 Gy</td>
</tr>
<tr>
<td>4</td>
<td>40%</td>
<td>15% 48 Gy</td>
<td>15% 45 Gy</td>
</tr>
<tr>
<td>5</td>
<td>35%</td>
<td>13% 64 Gy</td>
<td>13% 60 Gy</td>
</tr>
<tr>
<td>6</td>
<td>35%</td>
<td>17% 44 Gy</td>
<td>17% 40 Gy</td>
</tr>
</tbody>
</table>

Tradeoffs

• As choices become greater, do economic tradeoffs become obscured?
• Does IMRT change the tradeoffs between uncertainty in dose and the planned dose distribution?
• Does IMRT change the tradeoffs between predicted outcome and its uncertainty (EUD, mean dose vs. min tumor dose, eg.)
• Does IMRT expand the available tradeoffs?
What is different…?

והנה עליה גו ידה"
and he will stretch upon it the measuring line of chaos"

Isaiah 34:11