Patient Specific Quality Assurance in IMRT

Ping Xia, Ph.D
Department of Radiation Oncology
University of California at San Francisco

Acknowledgement
Cynthia Chuang, Ph.D
Pam Akazawa, CMD
Andrea Zytkovicz, B.S.
Katja Langen, Ph.D
NingSheng Zhu, Ph.D.
Nancy Lee, M.D.
Jean Quivey, M.D.
Lynn Verhey, Ph.D.

What are Differences in Patient Specific QA Between 3D-CRT and IMRT?

Outline

- Patient Setup
- Patient Immobilization
- Treatment Planning
- Treatment Verification
- Dose Verifications

Patient Setup and Immobilization
- Setup patient in a comfortable position.
- Immobilize patient well.
- Carefully screen patients for suitability of IMRT treatment.

Patient Setup
Comfortable patient positioning
Index Patient Positioning

More Beam Accessibility

Patient Selection

- Weekly conference to discuss potential patients for IMRT treatment, based on available machine time and man-powers.
- Compare conventional 3D plans with IMRT plans for justification of applying IMRT in new treatment sites.
- Patients who can not sustain prolonged treatment time are not qualified for IMRT.

Three Sets of Orthogonal Films

Three Sets of Orthogonal Films

0 Minutes 15 Minutes later 30 Minutes later

How Much Patient Moved?

- 16 patients were participated in this study.
- Taking orthogonal portal films prior to and after treatment for the first three days.
- These portal films are digitized and analyzed by a physician and a physicist.

Patient Movement

Figure 1

- x-direction
- y-direction
- z-direction

Patient Movements (mm)

Orthogonal Portal Film Set Number
Treatment Planning

Target and Structure Delineations
- Only treat contoured targets
- Only spare contoured structures: Spinal Cord, Brain stem, Optical structures, Parotid glands, Mandible, Tongue, TMJs, Larynx, Ears, Neck skin, artificial structures if needed.

Plan Acceptance Criteria
- RTOG Protocols (www.rtog.org)
 - H0022 - T1-2 Oropharyngeal Cancer
 - H0225 – T1-4 Nasopharyngeal Cancer
- Establish local standard for each disease site by periodically reviewing approved plans.

<table>
<thead>
<tr>
<th>Structures</th>
<th>Mean Dose (Gy)</th>
<th>Dose to 50% Vol. (Gy)</th>
<th>Dose to 80% Vol. (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiasm</td>
<td>27.5</td>
<td>21.5</td>
<td>19.7</td>
</tr>
<tr>
<td>Spinal Cord</td>
<td>38.3</td>
<td>30.6</td>
<td>25.8</td>
</tr>
<tr>
<td>Brain Stem</td>
<td>50.9</td>
<td>40.4</td>
<td>37.6</td>
</tr>
<tr>
<td>Optic Nerve Eye</td>
<td>23.7</td>
<td>22.2</td>
<td>18.8</td>
</tr>
<tr>
<td>Parotid Gland</td>
<td>26.8</td>
<td>25.1</td>
<td>17.9</td>
</tr>
<tr>
<td>T-M joint</td>
<td>33.8</td>
<td>30.5</td>
<td>26.7</td>
</tr>
<tr>
<td>Mid./Inner Ear</td>
<td>41.4</td>
<td>38.3</td>
<td>31.3</td>
</tr>
</tbody>
</table>

T3-4 Nasopharyngeal Cancer

<table>
<thead>
<tr>
<th>Structures</th>
<th>Mean Dose (Gy)</th>
<th>Dose to 50% Vol. (Gy)</th>
<th>Dose to 80% Vol. (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiasm</td>
<td>42.7</td>
<td>36.4</td>
<td>34.2</td>
</tr>
<tr>
<td>Spinal Cord</td>
<td>42.2</td>
<td>33.0</td>
<td>26.7</td>
</tr>
<tr>
<td>Brain Stem</td>
<td>55.3</td>
<td>43.1</td>
<td>40.0</td>
</tr>
<tr>
<td>Optic Nerve</td>
<td>41.6</td>
<td>34.4</td>
<td>31.6</td>
</tr>
<tr>
<td>Eye</td>
<td>32.8</td>
<td>21.9</td>
<td>19.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structures</th>
<th>Mean Dose (Gy)</th>
<th>Dose to 50% Vol. (Gy)</th>
<th>Dose to 80% Vol. (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parotid Gland</td>
<td>27.8</td>
<td>24.6</td>
<td>18.7</td>
</tr>
<tr>
<td>T-M joint</td>
<td>38</td>
<td>36.7</td>
<td>31.5</td>
</tr>
<tr>
<td>Middle/Inner Ear</td>
<td>49.6</td>
<td>49.8</td>
<td>42.2</td>
</tr>
</tbody>
</table>
Treatment Verification

Verification

- Iso-center verification - Orthogonal films
- Check intensity pattern prior or during treatment
 - Use portal film with reduced dose.
 - Use new extended dose range film (EDR2) tapped in a reticule.
 - Use Computed Radiography (CR).
- Check delivered MU/field vs planned MU

Intensity Pattern Check

Intensity Map

Port Film

What is Computed Radiography?

- A digital replacement for x-ray film and film processors
 - film → phosphor screen
 - cassette → cassette
 - processor → scanner

Computed Radiography System
Dose Verification

Dosimetric QA
- Delivery a patient-specific phantom plan is a good dry run to test connectivity of the entire IMRT procedure from planning to delivery.
- Identify undeliverable beams, potential collisions and obstructions in the beam.
- Verify entire plan, not single beam, including the same beam geometry as in the patient plan.
- It is difficult to find a uniform dose region within a single beam, especially for complex H&N plans.
Useful Tools

- Phantoms (Various sizes)
- Small ion chamber – (CC-13, Wellhoffer, 0.13 cc active volume).
- Electrometer
- TLDs (TLD reader)
- EDR2 film (film scanner, analysis software)
- MOFETs (optional)
- MapCHECK (optional)
MapCHECK™

Solid state circuitry in an acrylic housing, with the 445 diode detectors

Extended Dose Range film (EDR2)

<table>
<thead>
<tr>
<th>Strip Number</th>
<th>MU</th>
<th>Dose (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1x3</td>
<td>10.8</td>
</tr>
<tr>
<td>2</td>
<td>5x3</td>
<td>21.9</td>
</tr>
<tr>
<td>3</td>
<td>10x3</td>
<td>36.9</td>
</tr>
<tr>
<td>4</td>
<td>20x3</td>
<td>63.8</td>
</tr>
<tr>
<td>5</td>
<td>30x3</td>
<td>91.3</td>
</tr>
<tr>
<td>6</td>
<td>50x3</td>
<td>150.0</td>
</tr>
<tr>
<td>7</td>
<td>70x3</td>
<td>208.6</td>
</tr>
<tr>
<td>8</td>
<td>90x3</td>
<td>264.0</td>
</tr>
</tbody>
</table>

100 SSD, 3 cm depth

Multiple Point Dose Verification

Ion chamber
MOSFETs – Similar to diode detector

Calc. 2.18 Gy
Meas. 2.09 Gy
Diff. 4.35%

Calc. 1.37 Gy
Meas. 1.42 Gy
Diff. 3.52%

Calc. 0.81 Gy
Meas. 0.78 Gy
Diff. 3.45%

Calc. 0.82 Gy
Meas. 0.86 Gy
Diff. 4.63%

MLC Plan Isodose Verification

0.40 Gy, 0.30 Gy, 0.20 Gy, 0.10 Gy
Point Dose Verification

![IMRT Measurement Results](image)

Deviation between measured dose and planned dose at low dose regions

![Graph showing deviation](image)

Dose Verification Acceptance Criteria

- For high dose regions (>80%), less than 5% discrepancy between the measured and calculated doses
- For low dose regions (30~ 50%), less than 5% discrepancy between the measured and calculated doses when both normalize to the maximum dose.

Table Attenuation

- IMRT requires more beam angles than conventional treatment to achieve high conformity in dose distributions.
- Carbon fiber tabletop can reduce beam attenuation but the attenuation may vary depending on the thickness of materials.

Conforming Tabletop

![Conforming Tabletop](image)
Special Clinical Problems: Skin Dose Problem

- Multiple tangential beams decrease skin sparing
- Bolus effect, due to the use of the head-shoulder mask, increases skin dose about 15% when compared with and w/o the head-shoulder mask
- In order to cover superficial nodes, the inverse planning system increases beam intensity on the neck skin
- Contour neck skin as a sensitive structure to avoid the high dose on the neck skin

Patient Skin Dose Problem

Patient with marked skin reaction
Skin Dose Investigation

<table>
<thead>
<tr>
<th></th>
<th>Opp. Lateral</th>
<th>IMRT w/ skin included</th>
<th>IMRT w/ skin excluded</th>
<th>IMRT w/skin excluded + skin spare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ave. Daily dose (Gy)</td>
<td>1.53 ± 0.39</td>
<td>1.31 ± 0.31</td>
<td>1.82 ± 0.13</td>
<td>1.66 ± 0.15</td>
</tr>
<tr>
<td>Ave. Total dose (Gy)</td>
<td>50.83</td>
<td>43.12</td>
<td>60.10</td>
<td>54.64</td>
</tr>
</tbody>
</table>

Summary of Patient Specific QA

- Patient setup and immobilization
- Treatment plan QA
- Treatment Verification (Iso-center, intensity map check, and delivered MU)
- Dose Verification
- Special clinical problems