High Field MRI Technology, Applications, Safety, and Limitations

R. Jason Stafford, Ph.D.
Department of Imaging Physics
The University of Texas M. D. Anderson Cancer Center
Houston, TX

The promise of high-field MRI

• Trade SNR increase into higher resolution/speed
 • Higher resolution imaging
 • More detail
 • Less partial volume averaging
 • Faster imaging
 • Higher throughput
 • Breath hold
• Exploration of new/alternated contrast mechanisms
• Potential to significantly advance anatomic, functional, metabolic and molecular MR imaging

High-field Scanners

• 3.0T whole body scanners
 – Commercial since 2002
 – Accounted for 8.5% of high-field revenue in 2003
• Whole body 4-8T scanners: in evaluation
• Whole body 9.4T scanners: in the queue

A brief overview of high-field MRI

• Technical/Safety Issues
 – Main field
 – RF Field
 – Gradients
• Contrast changes
 – Spin lattice relaxation (T1)
 – Spin-Spin relaxation (T2)
 – Transverse relaxation (T2*)
 – Spectral Resolution
• Applications

Note:
7T: MGH and NIH also have
8T: Ohio State University

University of Minnesota CMRR
(www.cmrr.umn.edu)
The Main Field (B_0)
- Modern superconducting magnet design
 - Type II superconductors
 - Niobium titanium (NbTi) windings
 - Critical field limits upper field (< 10 T)
 - Bypass by cooling < 4.2 K
 - Niobium tin (Nb3Sn) for higher fields
 - Brittle and difficult to wind
 - Expensive to use
 - Fields above 10 T likely to interleave both

Magnetic Field Homogeneity
- Often stated as the $\Delta \nu$ (in Hz or ppm) across a given diameter of spherical volume (DSV).
- Homogeneity desired is often application dependent:
 - Routine imaging: < 5 ppm at 35 cm DSV
 - Fast imaging (EPI): < 1 ppm at 35 cm DSV
 - Spectroscopy: < 0.5 ppm at 35 cm DSV

High-field siting challenges
- With constant homogeneity, as field is increased
 - Magnet size increases
 - Overall weight increases
 - Cryogen volume and consumption increased
 - Energy stored in windings is increased
 - Stray field lines
- Costs and siting concerns can be significant
 - Modern 3T scanners weigh 2x as much as 1.5T
 - Higher-fields: 20 tons with cryogens + 100 tons shielding

Shimming
- Need higher performing, automated shims to maintain homogeneity
- Several stages
 - Magnet $\Rightarrow \delta < 125$ ppm
 - Superconducting shims: $\delta < 1.5$ ppm
 - Passive + Room Temperature: $\delta < 0.2$ ppm

Magnet Shielding
- Reduces problems of siting MRI in a confined space
 - 5 G line reduced from 10-13 m => 2-4 m
- Passive Shielding
 - High permeability material, such as iron, provides return path for stray field lines of B_0 decreasing the flux away from the magnet.
 - Can be quite heavy and expensive
- Active Shielding
 - Secondary shielding coils produce a field canceling fringe fields generated by primary field coils
 - Typically coils reside inside the magnet cryostat
 - Commercial 3T scanners rely on this to minimize weight
Fringe Fields: 1.5T versus 3.0T

FDA B_0 Field Safety limits

B_0 field safety concerns

Main field Safety: Torques and Force
Magnetic Field safety: Torques and Force

- Equipment formally designated as “MR Safe” at 1.5T may not be at 3T
- Force on a paramagnetic object at 3T can be about 5x the force at 1.5T
- Force on a ferromagnetic object can be about 2.5x the force at 1.5T

Fringe Field Force: 1.5T versus 3.0T

Magnetohydrodynamic Effects

- Electrically conductive fluid flow in magnetic field induces current and a force opposing the fluid flow
- Effects greatest when flow perpendicular to field
 - Potential across vessel \(-\mathbf{B}_0\)
 - Force resisting flow \(-\mathbf{B}_0^2\)

Magnetohydrodynamic Effects

- “T-wave swelling”
 - Distortions on ECG during period of highest flow through aorta during MRI exams
 - Induced potentials are on the order of 5 mV/Tesla
 - Effect will be exacerbated at high-fields
 - Will be an even greater challenge to obtain good ECG’s in a high-field MR environment

Magnetohydrodynamic Effects

- Increased blood pressure due to additional work needed to overcome magnetohydrodynamic force has a negligible effect on blood pressure
 - \(< 0.2%\) at 10 Tesla
- Hypothesized that field strengths of 18 Tesla are needed before a significant risk is seen in humans.

Transient Effects

- Phenomena reported in association with patients moving in/out of high field magnets
 - Nausea (slight)
 - Vertigo
 - Headache
 - Tingling/numbness
 - Visual disturbances (phosphenes)
 - Pain associated with tooth fillings
- All effects are transient and cease after leaving the magnet
 - Actively-shielded high-field magnets (large gradient fields)
 - Reduced or avoided by moving slowly in the main field
Radiofrequency at high-field

- B_1 field sensitivity increases approximately linearly with B_0
- RF propagation becomes increasingly inhomogeneous
 - Permittivity, conductivity and patient conformation
 - Reduced penetration
 - Increased dielectric effects
- RF phase and magnitude function of position
- Significant imaging challenge

Specific Absorption Ratio (SAR)

- Deposition of RF power in body can cause heating
 - Primary concern: whole body and localized heating
 - Significant concern at high-fields
 - Don’t forget about heating of medical devices!
- SAR = RF Power Absorbed per unit mass (W/kg)
 $$\text{SAR} = B_1^2 \cdot (\text{flip angle})^2 \cdot (\text{RF duty cycle})$$
- Another thumb rule
 - $1 \text{ W/kg} \rightarrow 1^\circ \text{C/hr} \text{ heating in an insulated tissue slab}$

SAR influenced operating modes

- Commercial scanners now must report SAR in real-time and notify users of operating thresholds
- Normal Mode
 - $\text{SAR} < 2 \text{ W/kg}, (\Delta T < 0.5^\circ \text{C})$
- First Level controlled Mode (medical supervision)
 - $\text{SAR} < 4 \text{ W/kg}, (\Delta T < 1.0^\circ \text{C})$
- Second level controlled mode (need IRB)

FDA SAR limits

<table>
<thead>
<tr>
<th>Site</th>
<th>Dose</th>
<th>Time (min)</th>
<th>SAR (W/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>whole body</td>
<td>averaged</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>hand</td>
<td>averaged</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>hand or torso</td>
<td>part grams</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>extremities</td>
<td>part grams</td>
<td>5</td>
<td>12</td>
</tr>
</tbody>
</table>

RF Sensitivity: Field Focusing

- Hyperintensity in middle of imaged volume
 - Dielectric effects become more significant as B_0
 - Oil filled phantoms homogeneous
 - Challenge for brain and body homogeneity

How the scanner estimate SAR

- Scanner run calibration routine
 - Determine energy needed for 90° and 180° flip angles
 - Sum energy of all RF pulses in sequence
 - Divide by pulse repetition time (TR) to estimate power
 - Divide by patient weight for whole body SAR
 - Peak SAR estimated as ~ 2.5 times whole body SAR on many scanners
SAR limits on imaging

- SAR can put serious restrictions on
 - Pulse repetition time
 - Number of RF pulses in a multi-echo sequence (FSE)
 - Slice efficiency in multi-slice imaging
 - Ability to use high SAR pulses
 - Fat saturation
 - Magnetization transfer pulses
 - Inversion pulses

Ways to work around SAR limitations

- RF pulse design
 - Reduced flip angle (particularly for fast spin echo)
- Use of array coils
 - Transmit-receive arrays to reduce power
 - Parallel imaging techniques (SENSE, SMASH)
- Imaging parameters
 - Rectangular field of view
 - Reduced number of phase encoding steps
 - Increased TR
 - Less slice in multi-slice imaging (lower efficiency)

Partially parallel imaging

- Standard software on new generation scanners
 - SENSE, ASSET, etc.
- Uses information encoded into receive array with apriori information of the coil sensitivities to facilitate undersampling in k-space
- This allows the user to speed up the acquisition by collecting less echoes
 - Doesn’t compromise resolution
 - SNR reduced by AT LEAST a factor of $\sqrt{2}$
- Less # of echoes => Less SAR

Partially Parallel Imaging (PPI)

Aliased Image

Un-aliased Image

Calculated using sensitivity information from array coils

Gradients at higher-fields

- High performance gradients wanted to take advantage of increased SNR for high resolution/speed
- Current systems have
 - Max amplitude ~ 20-50 mT/m
 - Max slew rates ~ 120-200 T/m/s
- Increased reactive (inductive and capacitive) coupling to bore/shims/RF coils
 - increased eddy currents and non-linearities
 - self-inductance limits maximum amplitude and slew rate
 - lower inductance designs the easiest fix

Gradient safety at higher fields

- Physiological constraints on dB/dt to prevent peripheral nerve stimulation limit gradient performance
 - One strategy for overcoming: shorten linearity volume
- Acoustic noise
 - force on the coils scales with the main field
Field Strength and Image Quality

- Increased main field
 - Signal to noise ratio increased
 - T_1 increased
 - T_2 decreases (slightly)
 - T_2^* decreases
 - Spectral resolution increases

Signal as a function of field strength

- Where does the increase in signal come from?
- Sample magnetization proportional to B_0
 $$M_0 \propto N \Delta V_{z+} \sim N \frac{hyB_0}{kT}$$
- Faraday’s Law: Induced e.m.f. in coil proportional to time rate of change of transverse magnetization

Larmor Precession Frequency $= \omega_0 = \gamma B_0$

Higher fields ... how much SNR?

- Signal versus field strength
 $$\text{Signal} \propto \alpha_0 M_0 \propto B_0^2$$
- Noise versus field strength
 $$\text{Noise} \propto \sqrt{\sigma_{\text{coil+ system}}^2 + \sigma_{\text{sample}}^2} \propto \sqrt{aB_0^2 + bB_0^2}$$

High-field signal-to-noise ratio

$$\text{SNR} \propto \frac{B_0^2}{\sqrt{aB_0^2 + bB_0^2}} \propto \frac{B_0^{3/4}}{B_1}$$
- At high-field, $B_1(B_0)$ is no longer easily quantifiable
- SNR is still “nearly” linear with B_0 in this regime

T1 relaxation as a function of B_0

- Spin lattice relaxation both lengthens and converges for most tissues with increased field strength
 - Increases of ~30%
- Consequences
 - Contrast and SNR reduction
 - Need longer TR and/or preparatory pulses
 - Longer inversion times needed
 - STIR and FLAIR
 - Tissue and blood more easily saturated
 - Reduced Ernst angles in gradient echo imaging

T1-weighted imaging

- Can use SNR boost for higher resolution
 - Keep similar scan time
- Spin-echo T1-W imaging will be SAR limited
 - Number of slices
 - Fat saturation
- Solutions
 - Use an array head coil
 - Reduce number of slices
 - Rectangular field of view
 - Longer TR
 - Multiple acquisitions

T2 and T2* relaxation as a function of B₀

- T2 can decrease slightly at fields > 3T
- T2* decreases significantly at higher fields
 - Changes vary strongly with tissue environment
 - Effects
 - Increased T2* contrast from contrast agents or blood
 - Decreased signal on gradient echo images due to susceptibility effects
 - Use of shorter TE
 - T2* filtering of echo trains in EPI
 - Use of shorter echo trains (multi-shot or PPI)

T2-weighted imaging

- Benefits from higher SNR
 - Can use longer echo-trains with higher bandwidths
 - Higher resolution in similar time
- Requires longer TR to compensate for T1 lengthening

T2-weighted and FLAIR imaging

Spectral resolution at higher fields

- Larger spectral separation between different chemical species
 - MR spectroscopy applications will obviously benefit from this and SNR increase
- Chemical shift between fat/water increases
 - 220 Hz @ 1.5T → 440 Hz @ 3T
 - Faster accrual of phase between water/fat for a given TE
 - Exasperates chemical shift artifacts
 - Use higher bandwidths
Imaging applications

- Briefly, let’s review some of the major applications that will receive the highest boost from higher field imaging

Spectroscopy

- Increased spectral resolution and SNR
 - Higher resolution studies, multi-nuclear, body apps

Spectroscopy

![Spectroscopy Chart]

BOLD imaging

- In general, Blood-Oxygen Level Dependent (BOLD) contrast increases with field strength
 - CNR increases by factor of 1.8-2.2 from 1.5T to 3.0T
 - Overall effects, and reasons for them, are complicated
- BOLD facilitates neuronal activation measurements without using exogenous contrast agents
- During activation oxygenated blood increases while deoxygenated blood (paramagnetic) decreases
 - T2* is lengthened ⇒ signal increase on T2* weighted images
 - BOLD contrast increases due to T2* contrast enhancement
- SNR increases sensitivity of technique as well

Gradient-echo BOLD fMRI: 1.5T vs 3.0T

![Gradient-echo BOLD fMRI Chart]

Diffusion Weighted Imaging

- SNR is crucial
 - Thinner slices
 - Reduce partial volume artifacts
 - Higher b-values
- Diffusion Tensor Imaging (DTI)
 - Same benefits
 - Can perform faster to minimize motion
- Shortened T2*
 - Limits benefits

Perfusion imaging

- Arterial Spin Labeling (ASL)
 - Uses and inversion pulse to “tag” blood
 - Images acquired as tagged blood perfuses into tissue
 - Long T1 results in better tagging
- Dynamic Susceptibility Contrast (DSC)
 - Bolus of paramagnetic agent
 - T2* contrast
 - T2* effect increased by field

Perfusion imaging

![Perfusion imaging Chart]
Contrast Enhanced imaging

- Higher SNR
- Longer tissue T1 versus little change in contrast agent T1
 - Better contrast
 - Use less contrast

![Dynamic contrast enhanced imaging](image)

Angiography

- Time of flight (TOF)
 - Relies on saturated normal tissue and bright inflow
 - Longer T1 time => better background tissue saturation
 - Magnetization Transfer Contrast can further suppress
 - Must be careful of SAR limits
 - Higher-field => increased inflow signal

![3D TOF](image)

Cardiac Imaging

- Speed is king in cardiac imaging
 - Trade-in SNR for speed
- Black blood imaging
 - Increased T1 of blood by 30% means a longer inversion time is needed (decrease in efficiency)
 - Larger SNR and slow T1 relaxation
 - Chances to increase the limited slice efficiency of the method
- Cine imaging
 - Bad news: SSFP (trueFISP, FIESTA) sequences will need to reduce flip angles due to SAR limitations
 - T2 weighting and SNR loss
 - Good news: SAR reduced as FA²

![Cardiac Imaging](image)