Recommendations for the Revision of AAPM Report No. 36

A Report of the Medical Physics Residency Education and Promotion Sub-committee of the AAPM Committee on Education and Training of Medical Physicists

Presented by Richard G. Lane

AAPM Report Number 36

Essentials and Guidelines for Hospital Based Medical Physics Residency Training Programs

A Report of the AAPM Presidential Ad Hoc Committee on The Clinical Training of Radiological Physicists

Revised and Approved July 1990

AAPM Presidential Ad-Hoc Committee on The Clinical Training of Radiological Physicists 1988-1989

E. S. Sternick, Chair

Members

• R. G. Evans
• E. R. Heitzman
• J. G. Keriakes
• E. C. McCullough
• R. L. Morin
• J. T. Payne

Consultants

• J. A. Purdy
• N. Suntharalingum
• J. A. Deye
• J. S. Krohmer
• A. R. Smith

Purpose of Ad Hoc Committee (1988)

• To review current state of education and training of medical radiological physicists

• To describe a hospital based education and training program for medical radiological physicists that would include basic education requirements, course work, clinical training, and the necessary prerequisites for certification.
AAPM Report Number ??
(Revision of AAPM Report No. 36)

Recommendations for Hospital Based Medical Physics Residency Training Programs

A Report of the Sub-committee on Medical Physics Residency Education and Promotion
AAPM Committee on Education and Training of Medical Physicists

submitted March, 2005

Medical Physics Residency Education and Promotion Sub-committee 2003-2005

• R. G. Lane, Chair
• K. R. Hogstrom
• D. Stevens
• J. Gibbons
• L. Verhey
• E. Cheney
• M. Martin

• K. Doppke
• B. Paliwal
CAMPEP Liaison
• E. Klein
Consultants
• R. Wendt
• M. Herman

Charge to the MPREP Sub-committee

• Revise AAPM Report No. 36
• Promote Residency Training Programs

AAPM Report No. 36

Table of Contents

Section I
Introduction
Section II
Essentials and Guidelines
Section III
Stipends and Benefits
Section IV
Appendices I - V
I. Areas of Competence
II. Education Requirements
III. Radiation Physics Knowledge
IV. Clinical Knowledge
V. Radiation Biology Knowledge
Section I
Introduction

Section II
Essentials and Guidelines

Introduction
Objective
Structure and Content

Recommend revision to AAPM Report No. 36
Section II Essentials and Guidelines

Introduction (radiation oncology)
Replace list of duties “calibration, calculation, measurement, planning, design, quality assurance, training, education, research, others as listed in Appendix IA”

with statement
“...radiation oncology physicists are responsible for those aspects of radiation oncology where physics plays a role in safe and accurate planning and delivery of radiation therapy to the patient.”

Recommend revision to AAPM Report No. 36
Section II Essentials and Guidelines

Introduction (diagnostic imaging)
Replace list of duties “calibration, calculation, measurement, image quality improvement and maintenance, training, education, research, others as listed in Appendix IB”

with statement
“...diagnostic imaging physicists are responsible for those aspects of diagnostic imaging where physics plays a role in safe and accurate diagnostic imaging procedures for patient care.”
Recommend revision to AAPM Report No. 36

Section II Essentials and Guidelines

Introduction (nuclear medicine)

Replace list of duties “calibration, calculation, measurement, quality assurance, radiation safety, training, education, research, others as listed in Appendix IA”

with statement “—nuclear medicine physicists are responsible for those aspects of nuclear medicine where physics plays a role in safe and accurate nuclear medicine diagnostic and therapeutic patient procedures.”

AAPM Report No. 36

Section II Essentials and Guidelines

Objective

The objective of a medical physics residency program is to educate and train medical physicists to a competency level sufficient to practice medical physics independently.

Recommend revision to AAPM Report No. 36

Section II Essentials and Guidelines

Residency Education Requirements

“—the graduate will have medical physics knowledge equivalent to that of a graduate of a CAMPEP accredited medical physics graduate program as appropriate for the ‘medical physics’ specialty.”
AAPM Report No. 79
(Revision of AAPM Report No. 44)

Academic Program Recommendations
For Graduate Degrees
In Medical Physics

A Report of The
AAPM Committee on Education and Training of Medical Physicists

November, 2002

AAPM Report No. 36
Section II
Essentials and Guidelines

Structure and Content
- Training Length
- Program Director
- Staff
- Training Content
- Training Complement
- Training Evaluation
- Facilities
- Clinical Resources
- Institutional Support
- Educational Environment
- Conferences
- Library Resources

Recommend revision to AAPM Report No. 36
Section II
Essentials and Guidelines

Structure and Content
- Training Length – 2 years
- Program Director – 7 yrs experience
- Staff – medical dosimetrist
- Training Content – >15MV
- Training Complement – 2:1, 1:1, 1:1
- Training Evaluation – more frequent
- Facilities – CT-simulator
- Clinical Resources – 500ExtBm, 30 Brachy
- Institutional Support – no change
- Educational Environment – no change
- Conferences – no change
- Library Resources – no change

AAPM Report No. 36
Section III
Stipends and Benefits
Section IV
Appendices I - V
I. Areas of Competence
II. Education Requirements
III. Radiation Physics Knowledge
IV. Clinical Knowledge
V. Radiation Biology Knowledge

Appendix I
Expected Areas of Competence

Appendix IA
Radiation Oncology
Treatment Equipment
Simulators
Radiation Protection
Patient Treatments
Brachytherapy
Additional

Appendix IB
Diagnostic Imaging
Imaging Systems
Computer Systems
Radiation Protection
Dosimetry
Additional

Appendix IC
Nuclear Medicine
Equipment
Radiation Safety
Room Design
Patient Dosimetry
Radiopharmacy
Clinical Studies
Additional
AAPM Report No. 36

Appendix II

Education Requirements for Medical Physics Residents

- M.S. or Ph.D. in Medical Physics, physics, or related field
- Curriculum
 - Physics, Math, Electronics, Computers, Physical Chemistry
- Background Knowledge
 - Radiation Physics, Dosimetry, Measurements, Protection, Imaging, Biology, Anatomy, Physiology, Clinical Radiation Oncology

AAPM Report No. 36

Appendix IIIA

Radiation Physics Topic Outline for Radiation Oncology Physics Residents

- Atomic and nuclear structure
- Radioactive decay
- Particulate radiation interactions
- X-Ray production
- High energy treatment machines
- X- and gamma ray interactions
- Exposure measurement
- Radiation quality
- Absorbed dose measurement
- Calibration of treatment beams
- Dose distributions – external beam
- Dose distributions – sealed sources
- Computerized treatment planning
- Radiation protection

AAPM Report No. 36

Appendix IIIB

Radiation Physics Topic Outline for Diagnostic Imaging Physics Residents

- Atomic and nuclear structure
- Radioactive decay
- Particulate radiation interactions
- X-Ray production
- X-ray generators
- X- and gamma ray interactions
- Exposure measurement
- Radiation quality
- Absorbed dose measurement
- Imaging Concepts
- Filters and beam limiting devices

AAPM Report No. 36

Appendix IIIB

Radiation Physics Topic Outline for Diagnostic Imaging Physics Residents

- Imaging Geometry
- Scattered Radiation
- Intensifying Screens
- Film
- Fluoroscopy
- Special Techniques
- Computed Tomography
- Ultrasound
- Magnetic Resonance
- (Mammography)
- (ACR Programs in Radiology)
<table>
<thead>
<tr>
<th>AAPM Report No. 36</th>
<th>Appendix IIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation Physics Topic Outline for Nuclear Medicine Physics Residents</td>
<td>Clinical Topic Outline for Radiation Oncology Physics Residents</td>
</tr>
<tr>
<td>• Atomic and nuclear structure</td>
<td>• Primary malignancies of each anatomical site</td>
</tr>
<tr>
<td>• Radioactive decay</td>
<td>– Epidemiology</td>
</tr>
<tr>
<td>• Particulate radiation interactions</td>
<td>– Pathology</td>
</tr>
<tr>
<td>• X- and gamma ray interactions</td>
<td>– Size of primary occurrence</td>
</tr>
<tr>
<td>• X-ray production</td>
<td>– Modes of metastases</td>
</tr>
<tr>
<td>• Exposure measurement</td>
<td>– Sites of metastases</td>
</tr>
<tr>
<td>• Radiation detectors</td>
<td>– Extent of disease</td>
</tr>
<tr>
<td>• Counting Statistics</td>
<td>– Complications</td>
</tr>
<tr>
<td>• Instrumentation <</td>
<td>– Treatment – primary disease</td>
</tr>
<tr>
<td>• Radiopharmaceuticals <</td>
<td>– Treatment – metastatic disease</td>
</tr>
<tr>
<td>• Radiopharmaceutical dosimetry <</td>
<td>– Radiation dosimetry</td>
</tr>
<tr>
<td>• Radiation safety <</td>
<td>and treatment planning</td>
</tr>
<tr>
<td>• Radiation Quality</td>
<td>• CPR</td>
</tr>
<tr>
<td>• Measurement of Absorbed dose</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AAPM Report No. 36</th>
<th>Appendix IVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix IVA</td>
<td></td>
</tr>
<tr>
<td>Clinical Topic Outline for Radiation Oncology Physics Residents</td>
<td></td>
</tr>
<tr>
<td>• Medical terminology</td>
<td></td>
</tr>
<tr>
<td>• Anatomy</td>
<td></td>
</tr>
<tr>
<td>• Physiology</td>
<td></td>
</tr>
<tr>
<td>• Patient procedures</td>
<td></td>
</tr>
<tr>
<td>– Radiographic</td>
<td></td>
</tr>
<tr>
<td>– Fluoroscopic</td>
<td></td>
</tr>
<tr>
<td>– Special imaging</td>
<td></td>
</tr>
<tr>
<td>• Contrast media</td>
<td></td>
</tr>
<tr>
<td>• CPR</td>
<td></td>
</tr>
<tr>
<td>• (Regulatory Guidelines)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AAPM Report No. 36</th>
<th>Appendix IVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix IVC</td>
<td></td>
</tr>
<tr>
<td>Clinical Topic Outline for Diagnostic Imaging Physics Residents</td>
<td></td>
</tr>
<tr>
<td>• Use of radiopharmaceuticals</td>
<td></td>
</tr>
<tr>
<td>• Instrumentation</td>
<td></td>
</tr>
<tr>
<td>• Patient preparation</td>
<td></td>
</tr>
<tr>
<td>• Nuclear medicine procedures</td>
<td></td>
</tr>
<tr>
<td>• Therapy</td>
<td></td>
</tr>
<tr>
<td>• Role of FDA and NRC</td>
<td></td>
</tr>
<tr>
<td>• CPR</td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Radiation Biology Topic Outline for Radiation Oncology Physics Residents</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>AAPM</td>
<td>• Interaction of radiation/matter
• Mammalian cell radiosensitivity
• Radiation response modifiers
• Solid tumor systems
• LET
• RBE
• Cell and tissue kinetics
• Tissue radiosensitivity
• Time-dose-fractionation
</td>
</tr>
<tr>
<td>Report No. 36</td>
<td>Appendix VA</td>
</tr>
<tr>
<td>Radiation Biology Topic Outline for Radiation Oncology Physics Residents</td>
<td></td>
</tr>
</tbody>
</table>
AAPM Report No. 36
Appendix VC
Radiation Biology Topic Outline for Nuclear Medicine Physics Residents

• Interaction of radiation/matter
• Mammalian cell radiosensitivity
• Radiation response modifiers
• Solid tumor systems
• LET
• RBE
• Cell and tissue kinetics
• Tissue radiosensitivity
• Time-dose-fractionation

AAPM Report No. 36
Appendix VC
Radiation Biology Topic Outline for Nuclear Medicine Physics Residents

• Total body irradiation – acute effects
• Late effects
• Embryo and fetal effects
• Risk analysis of low level exposure
• (Radiation Epidemiology)