Monte Carlo Simulations: Efficiency Improvement Techniques and Statistical Considerations

Daryoush Sheikh-Bagheri, Ph.D.¹, Iwan Kawrakow, Ph.D.², Blake Walters, M.Sc.², and David W.O. Rogers, Ph.D.³

¹Department of Radiation Oncology, Allegheny General Hospital
Pittsburgh, Pennsylvania

²Ionizing Radiation Standards, National Research Council,
Ottawa, Ontario, Canada

³Physics Department, Carleton University, Ottawa, Ontario, Canada
If linac simulations take too long ...

- Divide the beam into treatment-independent and treatment-dependent components
- Simulate treatment-independent components
 - characterize phase space distribution with a beam model
- Simulate treatment-dependent components and the patient CT together
If linac simulations can be made fast enough ...
Do all at once ...

• Simulate treatment-independent linac components, treatment-dependent components and the patient CT together
Metrics of Efficiency

\[\epsilon = \frac{1}{\sigma^2 T} \]

\(T \): computing time to obtain a variance \(\sigma^2 \)

\(\sigma^2 \): variance on the quantity of interest
Q: How can one increase the efficiency?

A: By reducing the computing time that it takes to obtain a sufficiently small variance on the quantity of interest

\[\epsilon = \frac{1}{\sigma^2T} \]

... easier said than done!
Variance of what?

- Variance of a quantity of interest averaged over a region
- Examples:
 \[
 \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\Delta D_i}{D_i} \right)^2, \quad \text{with } D_i > 0.5 \ D_{\text{max}}
 \]
 - fluence in 1x1 cm² regions in beam
 - dose on central axis or profile, etc.
Statistical Uncertainties

• Without them MC calculated values would be ... useless
• Prerequisite to efficiency estimation
• Central limit theorem
• The batch method
• The history-by-history method
• Pick independent particles ... otherwise correlation
• Only those particles are independent that belong to different histories
• Note particle’s origin when recycling phase-space files
• Latent Variance
Histories ...

- Treatment head (& air)
- Primary
- Patient
- Electron contamination
- Phantom scatter
- Monitor backscatter
- Head scatter
Uncertainties: Computational Considerations

\[\sigma_X = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \bar{X})^2}{N(N-1)}} \]

\[\sigma_X^2 = \frac{\langle X^2 \rangle - \langle X \rangle^2}{N - 1} \]

\[\langle X \rangle = \frac{1}{N} \sum_{i=1}^{N} x_i, \]

\[\langle X^2 \rangle = \frac{1}{N} \sum_{i=1}^{N} x_i^2 \]
Making the history-by-history technique computationally feasible

- Trick by Salvat

```plaintext
IF(HIST.NE.LASTHI(K)) THEN
  Q(K)  = Q(K)+QTEMP(K)
  Q2(K) = Q2(K)+QTEMP(K)**2
  QTEMP(K) = DELTAQ
  LASTHI(K) = HIST
ELSE
  QTEMP(K) = QTEMP(K)+DELTAQ
ENDIF

IF(nhist=X_last) THEN
  X_tmp=X_tmp+delta
ELSE
  X=X+X_tmp
  X2=X2+(X_tmp)**2
  X_tmp=delta
  X_last=nhist
ENDIF
```

Sempau et al, Phys Med Biol 46:1163-1186
Latent Variance

• Divide the dose calculation into 2 phases; A, B
 “A” -> the linac simulation resulting in a phase-space
 “B” -> the dose calculation using the phase-space

\[\sigma^2(\bar{q}) = \frac{1}{N}(A + B) \]

\[A = \sum_b \langle q_b \rangle^2 \langle n_b^2 \rangle + \sum_{a \neq b} \langle q_a \rangle \langle q_b \rangle \langle n_a n_b \rangle - \langle q \rangle^2 \]

\[B = \sum_b \sigma^2(q_b) \langle n_b^2 \rangle \]

\[\sigma_k^2(\bar{q}) = \frac{1}{N}(A + BK^{-1}) \]

Sempau et al, Phys Med Biol 46:1163-1186
History-by-history and batch methods

Walters, Kawrakow and Rogers, Med Phys 29: 2745-2752
Advantage of history by history

3594 voxels in both cases

10 batches

history by history

number of voxels/bin

Dose in a brachytherapy phantom: from Gultekin Yegin
Codes used in radiotherapy

- ITS
- MCNP
- PENELLOPE
- GEANT4
- No VRTs -> EGS and ITS/ETRAN same efficiency
- Other systems slower
- BEAMnrc code significantly more efficient, still not fast enough for routine RTP
BEAMnrc

- a general purpose user-code for simulation of radiotherapy beams
- built on EGSnrc
- freely available for non-commercial use
- lots of built in variance reduction to enhance efficiency, especially for accelerator photon beams
Codes designed to be more efficient

- The Macro Monte Carlo (MMC) code
- The PEREGRINE code
- Voxel Monte Carlo (VMC/xVMC)
- VMC++
- MCDOSE
- The Monte Carlo Vista (MCV) code system
- The Dose Planning Method (DPM)
- and other codes (Keall and Hoban 1996; Wang, Chui, and Lovelock 1998).
Comparative accuracy of dose calculation

18 MV beam
1.5x1.5 cm² beam
How fast are current codes?

<table>
<thead>
<tr>
<th>Monte Carlo code</th>
<th>Time estimate (minutes)</th>
<th>% max. diff. relative to ESG4/PRESTA/DOSXYZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESG4/PRESTA/DOSXYZ</td>
<td>42.9</td>
<td>0, benchmark calculation</td>
</tr>
<tr>
<td>VMC++</td>
<td>0.9</td>
<td>± 1</td>
</tr>
<tr>
<td>MCDOSE (modified ESG4/PRESTA)</td>
<td>1.6</td>
<td>± 1</td>
</tr>
<tr>
<td>MCV (modified ESG4/PRESTA)</td>
<td>21.8</td>
<td>± 1</td>
</tr>
<tr>
<td>RT_DPM (modified DPM)</td>
<td>7.3</td>
<td>± 1</td>
</tr>
<tr>
<td>MCNPX</td>
<td>60.0</td>
<td>max. diff. of 8% at Al/lung interface (on average ± 1% agreement)</td>
</tr>
<tr>
<td>Nomos (PEREGRINE)</td>
<td>43.3*</td>
<td>± 1*</td>
</tr>
<tr>
<td>GEANT 4 (4.6.1)</td>
<td>193.3**</td>
<td>± 1 for homogeneous water and water/air interfaces**</td>
</tr>
</tbody>
</table>

*Note that the timing for the PEREGRINE code also includes the sampling from a correlated-histogram source model and transport through the field-defining collimators. **See Poon and Verhaegen (2005) for further details.

AEIT vs VRT

• Distinguish between a technique that achieves the improved efficiency through the use of approximations

→ approximate efficiency improving technique (AEIT)

• And a technique that does not alter the physics in any way when it increases the efficiency

→ true variance reduction technique (VRT)
AEITs used in the treatment head simulation

- Condensed History Technique (CHT)
- Range Rejection
- Transport Cutoffs
Condensed History Technique (CHT)

In previous talk Iwan talked about this in detail...
Condensed History Technique (CHT)

- 10^6 elastic and inelastic collisions until locally absorbed
- Berger (1963) introduced the condensed history technique
- “step-size” dependence
- Is an AEIT
- Two main components very strongly influence the simulation speed and accuracy:
 - the “electron-step algorithm”
 (“transport mechanics”)
 - the boundary-crossing algorithm
Range Rejection

- Discard an electron if its residual range is smaller than the distance to the nearest boundary.
- Region Rejection: Discard more aggressively when “far” away from the region of interest.

- Suggested 1.5 MeV cutoff for 6 MV and up
- By tagging bremsstrahlung photons generated outside target
- Speed up -> a factor of 3
- Negligible (< 0.2%) underestimation of the calculated photon fluence
Transport Cutoffs

• Do not transport further, if the energy drops below a certain threshold (ECUT & PCUT)
• Do not create secondaries if their energy is going to be below a certain threshold (AE & AP)
Splitting and Russian Roulette

- Originally proposed by J. von Neumann and S. Ulam
- The most powerful VRTs used in Treatment Head Simulations
Splitting and Roulette; a schematic

marks termination of an e- or e+ or both by Russian Roulette

incident e- beam

target

collimator
Splitting, Roulette & Particle Weight

\[1 \, w_i = 10 \, w_f \]

\[10 \, w_i = 1 \, w_f \]

Split! Roulette!
Weight Management for:

Splitting and Russian Roulette

From Rock Mackie

Courtesy of Jinsheng Li, Fox Chase CC
Splitting-based VRTs developed for BEAM/BEAMnrc

- Uniform Bremsstrahlung Splitting (UBS)
- Selective Bremsstrahlung Splitting (SBS)
- Directional Bremsstrahlung Splitting (DBS)
Electrons incident on and transported in the tungsten target ...
No Splitting
And the resulting brem photons ...
Uniform Brems Splitting

Particle weights: \(\frac{1}{N} \)
Uniform Brems Splitting

relative efficiency

russian roulette on

nsplit

no russian roulette

20 100 1000

AUG
Selective Brems Splitting

Particle weights:
Vary between $1/N_{\text{min}}$ and $1/N_{\text{max}}$
Fat Particles

Distribution that has fat particles

No fat particles
Selective Brems Splitting

Sheikh-Bagheri (1999)

Probability of photon emission towards treatment field

\[P(R_e, E_e, R_f, SSD) = \frac{\int_{\theta_{\text{min}}}^{\theta_{\text{max}}} d\sigma/d\theta_p f(\theta_p) d\theta_p}{\int_{0}^{\pi} d\sigma/d\theta_p d\theta_p} \]

\[\theta_p/\theta \]

SSD

bremsstrahlung

treatment field

Sheikh-Bagheri (1999)
Selective Brem Splitting (SBS)

![Graph showing relative efficiency vs. nsplit for SBS and UBS with and without Russian roulette.]

- SBS
- Russian roulette on
- No Russian roulette
- UBS
The evolution of splitting routines

No Splitting

SBS
- e^- is aiming off FOI

UBS

DBS
- "Fat" photon surviving Russian Roulette
- Photons emitted (and transported) toward FOI

- e^- is aiming at FOI
Directional Brem Splitting (DBS)

- **goal:** all particles in field when reach phase space have same weight

Procedure

i) brem from all fat electrons split nsplit times

ii) if photon aimed at field of interest, keep it, otherwise Russian roulette it:

 if it survives, weight is 1 (i.e. fat)

iii) if using only leading term of Koch-Motz angular dist’n for brem: do_smart_brems and similar tricks for other interactions
do_smart_brems

do_smart_brems calculates how many of the nsplit brem photons will head to the field and only generates those photons;
+
samples 1 photon from the entire distribution (if not heading into the field, kept with weight 1)
Probability of photon heading at field

```
  1.000
  0.100
  0.010
  0.001

probability

E / MeV
```

- The graph shows the probability of a photon heading at a specific field as a function of energy (E) in MeV.
- The x-axis represents energy in MeV, ranging from 0 to 6.
- The y-axis represents probability, ranging from 0.001 to 1.000.
- The curve indicates an increasing probability with energy.
DBS (cont)

Play similar tricks for other quantities

• e+ annihilation: \(\text{(uniform_photons)} \)

• Compton scattering:
 \(\text{(do_smart_compton if Klein Nishina)} \)

• Pair production/photo-effect: \(\text{(Russian roulette before sampling)} \)

• Fluorescence: \(\text{(uniform_photons)} \)
DBS (cont)

Photons
- reaching field have weight 1/nsplit
- outside field are fat

Electrons in the field
- usually fat
- a few have weight 1/nsplit from interactions in the air
Efficiency of fluence calcs

Russian roulette on

relative efficiency

nsplit

20

100

1000

10000

DBS

SBS

UBS
Efficiency of phantom dose calcs

- DBS (nsplit=5000)
- SBS (nsplit=4000)
- UBS (nsplit=40)

russian roulette on

relative efficiency vs. depth in phantom /cm
6 MV, 10x10 cm²

5.5 min CPU on 2GHz AMD 2400+
NBRSPL=1000, split 10
splitting field radius 10 cm

relative dose

scoring radius 2 cm

depth /cm
Electron contamination ...

- Primary
- Phantom scatter
- Head scatter
- Monitor backscatter
- Treatment head (& air)
- Patient
Electron problem

Unlike UBS and SBS, DBS efficiency gain for electrons is only 2

Basis of the solution

-electrons are, almost entirely, from flattening filter and below

-major gains are from “taking care” of electrons in primary collimator
Electron solution

Introduce 2 planes

Splitting plane: split weight 1 charged particles nsplit times

(may distribute symmetrically)

Russian roulette turned off below a certain plane and all fat photon interactions split nsplit times
Efficiency increase for e^-
Efficiency: total dose

- DBS no fat photons
- DBS - with fat photons
- SBS
- UBS

relative efficiency vs depth in phantom (cm)
DBS summary

DBS improves BEAMnrc’s efficiency by a factor of 800 (10 vs SBS) for photon beams (ignore small dose from photons outside field).

For total dose calculations the efficiency improves by a factor of 150 (5 vs SBS)

SBS is optimized for greater nsplit than previously realized (5000)
Efficiency Improvement Techniques Used in Patient Simulations

- Macro Monte Carlo
- History Repetition
- Boundary-Crossing Algorithms
- Precalculated Interaction Densities
- Woodcock Tracing
- Photon Splitting Combined with Russian Roulette
- Simultaneous Transport of Particle Sets (STOPS)
- Quasi-Random Sequences
- Correlated Sampling
Macro Monte Carlo (MMC)

Kugel
- Incident electron Energy T_i
- Emerging electron Energy T_f
- electron track

Ellipsoid
- r, Z, ρ
- α, θ
- $\varepsilon(r, Z, \rho, T_i)$

Centered Kugel
- r, Z, ρ
- α, θ
Macro Monte Carlo

Kugels Ellipsoids Centered Kugels

Electron direction at exit-position
Energy deposition path
Electron Track Repeating

Courtesy of Jinsheng Li, Fox Chase CC
STOPS
(Simultaneous Transport Of Particle Sets)

- Several particles that have the same energy (but not position, direction, weight) form a “Particle Set” and are transported simultaneously.
- This allows material independent quantities such as interpolation indices, azimuthal angles, maximum acceptable step-lengths, etc., to be calculated just once for the set.
- Material dependent quantities such as MS angles and discrete interaction probabilities are sampled separately.
- In particular, if one or more particles in the set undergo a different interaction, set is split into separate sets and each new set transported individually.
Faster Convergence Using Quasi RNs

\[I = \int_{a}^{b} f(x) \, dx \]

\[I_m = (b-a) \frac{1}{N} \sum_{i=1}^{N} f(x_i) \]

\[\lim_{N \to \infty} I_m = I \]
Pseudo-Random vs. Quasi-Random
Pseudo-Random vs. Quasi-Random in 3D
Less Frequently Used VRTs

- Forcing
- CNVR
- Correlated Sampling
- Exponential Transform
Photon interaction forcing

- **Force to interact in a phantom**
 \[N_\lambda = - \ln \{1 - R[1 - e^{-M_\lambda}]\} \]

 \(M_\lambda \) is the thickness of the phantom in number of mean free paths

 The new photon weight: \(W' = W \{1 - e^{-M_\lambda}\} \)

- **Force to interact in a region of a phantom**
 \[N_\lambda = M_{\lambda 1} - \ln \{1 - R[1 - e^{(M_{\lambda 1} - M_{\lambda 2})}]\} \]

 \(M_{\lambda 1} \) is the number of mean free paths to the near boundary of the region and \(M_{\lambda 2} \) to the far boundary of the region.

 The new photon weight: \(W' = W \{e^{-M_{\lambda 1}} - e^{-M_{\lambda 2}}\} \)

Courtesy of Jinsheng Li, Fox Chase CC
Combine Electron Track Repeating with Photon Interaction Forcing and Splitting

Courtesy of Jinsheng Li, Fox Chase CC
CNVR Technique

• Forces the primary photon fluence to be invariant with depth
Correlated Sampling

Main histories

Split histories
Exponential Transform

- Bias the sampling procedure to interact in the regions of interest

\[N_\lambda = -\beta \ln R \]
\[\beta = \frac{1}{(1 - C \cos \theta)} \]

C is defined by the user, \(\theta \) is the angle the photon makes with the direction of interest

The new weighting factor: \(W' = W C e^{-N_\lambda \alpha \cos \theta} \)

\(C < 0 \): smaller \(N_\lambda \) for surface problem, shortening
\(0 < C < 1 \): larger \(N_\lambda \) for shielding problem, stretching

Courtesy of Jinsheng Li, Fox Chase CC
Stretched ($C = 1/2$) and shortened ($C = -1$) distribution compared to an unbiased one ($C = 0$).
(From A.F. Bielajew and D.W.O. Rogers)
Use of Symmetry

Courtesy of Jinsheng Li, Fox Chase CC
PDD for Photon Beams

- **DOSXYZ**
- **MCDOSE, 6MeV**
- **MCDOSE, 15MV**
- **MCDOSE, 2MeV**

- Lung Tissue
- Tissue

<table>
<thead>
<tr>
<th>Depth Z (cm)</th>
<th>Dose (pGy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 5 10 15 20</td>
<td>0 2 4 6 8</td>
</tr>
</tbody>
</table>

- Without VRT
- With VRT

Courtesy of Jinsheng Li, Fox Chase CC
To split, or not to split: ... that is the question!

- "Sheikh"speare