PET Shielding

G. Donald Frey, Ph.D.
Department of Radiology
Medical University of South Carolina
Charleston, SC

Design Values
Annual Limits
Same as NCRP 147
What radionuclides and radiopharmaceuticals should we design for?

Comparison of PET Decay Constants

<table>
<thead>
<tr>
<th>Rate Constants</th>
<th>Value</th>
<th>1 Hr Integrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-11</td>
<td>0.184</td>
<td>0.063</td>
</tr>
<tr>
<td>N-11</td>
<td>0.180</td>
<td>0.034</td>
</tr>
<tr>
<td>O-15</td>
<td>0.190</td>
<td>0.007</td>
</tr>
<tr>
<td>F-18</td>
<td>0.168</td>
<td>0.119</td>
</tr>
<tr>
<td>Cu-64</td>
<td>0.03</td>
<td>0.024</td>
</tr>
<tr>
<td>Ga-68</td>
<td>0.13</td>
<td>0.101</td>
</tr>
<tr>
<td>Rb-82</td>
<td>0.16</td>
<td>0.006</td>
</tr>
<tr>
<td>O-15</td>
<td>0.15</td>
<td>0.183</td>
</tr>
</tbody>
</table>

F-18 Rate Constants

<table>
<thead>
<tr>
<th>F-18 Rate Constants</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Kerma Exposure Rate</td>
<td>0.136</td>
</tr>
<tr>
<td>Effective Dose Equivalent (ANS-1991)</td>
<td>0.145</td>
</tr>
<tr>
<td>Tissue Dose Constant</td>
<td>0.148</td>
</tr>
<tr>
<td>Deep Dose Equivalent (ANS-1977)</td>
<td>0.162</td>
</tr>
<tr>
<td>Maximum Dose (ANS-1977)</td>
<td>0.198</td>
</tr>
</tbody>
</table>

Note: The equations in the TG Report correct this for self absorption

What Is the Activity?

\[\dot{D} = \frac{A_r}{d^2} \]
What Is the Activity?

\[A_u = \int_0^{t_u} A_0 e^{-\lambda t} \, dt \]

Scan Room Activity

\[A_s = A_0 \kappa \left(\frac{1}{2} \right)^{t_u/T_{1/2}} \int_{t_u}^{t_u} e^{-\lambda t} \, dt \]

Voiding factor 0.85

Across 8 ft Corridor

Fully Occupied Space

Distance

Report Distances Are in Meters

Dose_{ann} = \frac{\tilde{A}_u \, t_u \, T_{60} / d^2}{V}

\begin{align*}
\tilde{A}_u &= \left(\frac{A_0}{\ln(2)} \right) \left(\frac{T_{1/2}}{t_u} \right) \\
&\quad \times \left(1 - \left(\frac{1}{2} \right)^{t/T_{1/2}} \right) \\
\end{align*}

<table>
<thead>
<tr>
<th>t_u</th>
<th>0.91</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0.91</td>
</tr>
<tr>
<td>60</td>
<td>0.83</td>
</tr>
<tr>
<td>90</td>
<td>0.76</td>
</tr>
</tbody>
</table>
Occupancy Factor

Same as NCRP 147

Transmission Factor

Use Archer Equation

\[
B = \frac{pd^2}{T \tilde{A}_u t_u \Gamma N}
\]

Scan Room

\[
Dose_{ann} = \tilde{A}_s t_s \Gamma N / d^2
\]

\[
B = \frac{pd^2}{T \tilde{A}_s t_s \Gamma N}
\]

Use Archer Equation

\[
\chi = \frac{1}{\alpha \gamma} \ln \left[\left(\frac{B^{-\gamma} + (\beta / \alpha)}{1 + (\beta / \alpha)} \right) \right]
\]
Table V. Fitting parameter for broad beam 511 keV transmission data.

<table>
<thead>
<tr>
<th>Shielding material</th>
<th>Alpha (cm(^{-1}))</th>
<th>Beta (cm(^{-1}))</th>
<th>Gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>1.543</td>
<td>0.4408</td>
<td>2.136</td>
</tr>
<tr>
<td>Concrete</td>
<td>0.1539</td>
<td>0.1161</td>
<td>2.0752</td>
</tr>
<tr>
<td>Iron</td>
<td>0.5704</td>
<td>0.3063</td>
<td>0.6326</td>
</tr>
</tbody>
</table>

Effective Design of PET Shielding

Early Intervention

- Design can greatly influence
 - Shielding costs
 - Easy of use
- Sites often have 3 dimensional aspects that affect shielding
- Architects often have naive ideas based on nuclear or x-ray shielding
- There are other radiation protection aspects besides shielding
Other Possibilities

- Maze for uptake rooms
- No window in control room
 - Use video viewing
 - Increase distance
- General assistance with design
 - Lighting
 - Intercoms

Spreadsheet for Calculations
PET Shielding Is Complex

• More lead is used than for typical radiographic installations
• The safety factor is much less than for most diagnostic installations
• Exposure usually occurs from multiple sources
Shielding Evaluation
• To Insure
 ◦ Radiation Doses are below the levels required by regulation
 ◦ Are consistent with the shielding design
 ◦ That the shielding is properly installed

My Priorities
• Check for proper construction
• Determine the adequacy of the shielding
• NCRP 147

Instrumentation
• We have used three types of instruments
 ◦ Large volume ionization chamber
 • Radcal 9010 w/ 10X5-1800
 ◦ Portable pressurized ionization chamber
 • Innovision 451P
 ◦ Portable NaI(Tl) Survey Meter
 • Exploranium GR-135

Instrument of Choice
• All three devices gave approximately equal readings
• All could produce accurate measurements
• The portable NaI(Tl) survey meter was somewhat more sensitive and convenient to use
Proper Construction

- Use source in each location
- Use meter to scan for gaps and voids

Evaluating the Annual Exposure at a Location

Scaled Source Method

- Find scaled source strengths that give the same radiation exposure (air kerma) as the total activity that is used in the room
- Place sources in all patient locations
- Measure dose at appropriate

Annual Dose = Dose Rate x Number of Patients x Time Each Patient is in the Room

Activity = Average Patient Dose x Number of Patients x Time Each Patient is in the Room

Annual Dose = Dose Rate x 1 hour

Source

Annual Dose = Dose Rate x Number of Patients x Time Each Patient is in the Room

Source
Average Patient Activity

Uptake Room

- Factors
 - Administered activity
 - Time patient spends in room
 - Number of patients in the room
 - Patient self attenuation factor

\[\dot{\lambda}_u = \xi \left(\frac{\lambda_0}{1 + (2)^{\left(\frac{T_{1/2}}{T_u}\right)}} \right) (1 - (1/2)^{T_u/T_{1/2}}) \]

Average Patient Activity

Scan Room

- Factors
 - Administered activity
 - Time patient spends in uptake room
 - Fraction of activity voided by patient
 - Time patient spends in scan room
 - Number of patients in the room
 - Patient self attenuation factor

\[\dot{\lambda}_s = \xi \left(\frac{\lambda_0}{1 + (2)^{\left(\frac{T_{1/2}}{T_u}\right)}} \right) \left(1 - (1/2)\left(\frac{T_{1/2}}{T_u}\right)^{\left(\frac{T_u}{T_{1/2}}\right)}\right) \]

So for all rooms

- The equivalent activity is the product of
 - The average activity
 - The number of patients
 - The time they are in the room

\[\sum \dot{\lambda}_u n_s t_s + \sum \dot{\lambda}_s n_s t_s \rightarrow D (x, y, z) \]

So from all rooms

<table>
<thead>
<tr>
<th>Room</th>
<th>Effective Activity (mCi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uptake Room 1</td>
<td>20536</td>
</tr>
<tr>
<td>Uptake Room 2</td>
<td>5134</td>
</tr>
<tr>
<td>Scan Room</td>
<td>9001</td>
</tr>
</tbody>
</table>

So we need to Scale the Activity

\[\left(\sum \dot{\lambda}_u n_s t_s + \sum \dot{\lambda}_s n_s t_s \right) \n_\rightarrow D (x, y, z) / \sigma \]

\[\sigma_{\text{all}} = \dot{\lambda}_u n_u t_u / \sigma \]

\[\sigma_{\text{all}} = \dot{\lambda}_s n_s t_s / \sigma \]
So from all rooms

Scaling Factor

<table>
<thead>
<tr>
<th>Room</th>
<th>Effective Activity</th>
<th>Scaled Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uptake Room 1</td>
<td>20536 mCi</td>
<td>41 mCi</td>
</tr>
<tr>
<td>Uptake Room 2</td>
<td>5134 mCi</td>
<td>10 mCi</td>
</tr>
<tr>
<td>Scan Room</td>
<td>9001 mCi</td>
<td>18 mCi</td>
</tr>
</tbody>
</table>

Compare Results to Design Values

\[
\frac{p}{TD(x, y, z)} \leq 1
\]

- Correct for Occupancy Factors
- Correct for decay of sources during the measurement

Evaluating Lead in Wall

- Use a source in room
- Measure air kerma at point outside wall
- Determine B
- Evaluate using chart from TG 108
- Calculate Using Archer Equation
Direct Calculation

- The thickness can also be calculated using the model of Archer et al.

\[
x = \left(\frac{1}{\alpha \gamma} \right) \ln \left[\frac{B \cdot e^{-\gamma} + (\beta / \alpha)}{1 + (\beta / \alpha)} \right]
\]

\[
D_0 = \frac{A_0}{d^2}
\]

\[
B = \frac{D_m}{A_0} d^2
\]

\[
x = \left(\frac{1}{\alpha \gamma} \right) \ln \left[\left(\frac{D_m}{A_0} d^2 \right)^{-\gamma} + (\beta / \alpha) \right] / \left(1 + (\beta / \alpha) \right)
\]

How Much Activity Do You Need?

- The table below shows the required activity in mCi and MBq for different lead thicknesses to achieve a certain amount of shielding.

<table>
<thead>
<tr>
<th>US Inches</th>
<th>Metric mm</th>
<th>Attenuation</th>
<th>Activity MBq</th>
<th>mCi</th>
<th>uSv/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1.000</td>
<td>629</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>1/16</td>
<td>1.6</td>
<td>0.829</td>
<td>759</td>
<td>21</td>
<td>12</td>
</tr>
<tr>
<td>1/8</td>
<td>3.2</td>
<td>0.674</td>
<td>933</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>1/4</td>
<td>6.4</td>
<td>0.430</td>
<td>1465</td>
<td>40</td>
<td>23</td>
</tr>
<tr>
<td>3/8</td>
<td>9.5</td>
<td>0.267</td>
<td>2357</td>
<td>64</td>
<td>37</td>
</tr>
<tr>
<td>1/2</td>
<td>12.7</td>
<td>0.164</td>
<td>3826</td>
<td>103</td>
<td>61</td>
</tr>
<tr>
<td>3/4</td>
<td>19.1</td>
<td>0.062</td>
<td>10168</td>
<td>275</td>
<td>162</td>
</tr>
<tr>
<td>1</td>
<td>25.4</td>
<td>0.023</td>
<td>27078</td>
<td>732</td>
<td>430</td>
</tr>
</tbody>
</table>

Desired distance: 3 meters

Desired Air Kerma: 10 uSv/hr

Lead Thickness Evaluation

- F-18 Source: 1742.7 MBq
- Calibration Time: 3:35 PM
- Gamma Constant: 0.143 uSv-m²/MBq-h
- Alpha 1.5430 per cm
- Beta -0.4408 per cm
- Gamma 2.1360
Some day you will look back upon this and run into a bus