Facility Design
American Association of Physicists in Medicine
2007 Summer School

J. Daniel Bourland, PhD
Department of Radiation Oncology
Wake Forest University School of Medicine
Winston-Salem, North Carolina, USA

Outline
• Facility Purposes
• Facility Design Process
• Design Team Functions
• Functional Plan To Spatial Reality
• Example: A Radiation Oncology Facility
• Keys For Successful Planning
• Summary

Healthcare Facility Purposes
• Accomplish Mission – Program, Department, Institution, other relevant groups (community, etc)
• A Facility is a Tool - a basic resource, facilitating component which programs and people depend on
 – Facilities house people – workers, patients, others
 – Facilities honor people; memorialize people
 – Facilities provide for visual response – art
 Point – the physical structure is about people

Facility Design Process
• Identify Need and General Solution
• Vision – For the Future
 – What is desired to be accomplished?
 – Facilities – a 100-year event – future revisions
• Identify Players
 – Proponents, participants, related programs, infrastructure, administration
• Proposal – A convincing argument

Planning On The Grand Scale
• All spaces designated
• How will your plan fit?
• Challenges can be extreme
Design Process and People

Thorough planning provides for a successful facility and minimizes mistakes that may cost dollars or limit usefulness. This process may take a long time, depending on the project scale.

- Planner/Coordinator – in-house, architectural firm
 - Key individuals to hold everything together, organize, etc
- Design Team – participating programs, departments, infrastructure (IS, utilities), administration

Design Process – Continual, Iterative

- Designate Architect, Planner, Coordinator
- Define Design Team – Participants – “The Owners”
 - There are different levels of ownership – “Physics”
- Planning Questionnaire - Program Objectives
- Functional Space Program
- Spatial Relationships of Functions (review)
 - Space Functions (rev) → Block Diagram (rev) → Floor Plan
- Plan Review
- Specifications (Systems, Equipment, Shielding, Vendors)
- Plan Review and Acceptance
- Then, Construction Phase (a different, important, story!)

Facility Planning Process - Detail

Meeting 1 – Month 1
- Discuss Departmental Objectives
- Review Space Needs Questionnaires
- Identify Potential Options for Planning
- Review Connections with other Medical Center Functions
- Brief Overview of Site Planning Considerations
- Overview Construction Budget Requirements
- Evaluate Preliminary Milestone Schedule
- Discuss Major Medical Equipment Selection and Specification

Meeting 2 – Month 2
- Review First Draft of Program and Space Requirements
- Evaluate Preliminary Sketches of Department Adjacency Options
- Identify Major Engineering Components and Obtain Basic Engineering Data
- Review Preliminary Sketches Indicating Room-By-Room Adjacencies
- Discuss Building Design Objectives
- Review Parking and Site Objectives/Parameters
- Review Construction Budget Requirements
- Discuss Preliminary Building Materials
- Discuss Major Medical Equipment Selection and Specification

Meeting 3 – Months 3-4
- Review and Approve Final Draft of Program and Space Requirements
- Confirm Departmental Adjacencies
- Confirm Room-By-Room Adjacencies
- Review Preliminary Engineering Concepts
- Evaluate Building Design Options
- Confirm Construction Budget Requirements
- Review Preliminary Life-Safety Plans
- Review First Draft of Schematic Design Narrative
- Confirm Major Medical Equipment Selections

Meeting 4 – Months 5-9
- Present Final Program of Space Requirements
- Present Final Building Design
- Present Final Floor Plans
- Present Final Site Plan Indicating Parking, Entrances, Landscaping, Etc
- Deliver Final Schematic Design Submission
- Initiate Preparation of Preliminary Estimate of Project Cost

Physicist – an important member of the Design Team

Planning Questionnaire

For each department, program, or service
The future is 5 years from now (or so)

- Scope of Services, Goals, and Objectives
 - Current and Future, Special future equipment or space (Vision)
- Workloads: Past, Current, Projected (Stats, Growth)
- Internal Functional Relationships → Flow
 - A map of how your department works (or doesn’t work)
 - Opportunity for revision
- Important External Relationships → Flow, Collaborators
- Staffing: Current, Projected, Organizational Chart (Flow)
- Existing Conditions – perceptions of current spaces
Planning Questionnaire - Existing Conditions
Grade as: Excellent, Adequate, Inadequate

- Systems
 - Heating, A/C
 - Communications
 - Electrical Service
 - Lighting
 - Plumbing
 - Medical Gases
 - Transportation
- Medical Equipment
 - Linear Accelerators, other Treatment
 - CT, MR, other Imaging
- Space
 - Architectural Finishes
 - Efficiency of Layout
 - Size of Department
- Location
 - Relationship to Other Programs
 - Relationship to Outpatient Flow
 - Relationship to Inpatient Flow
 - Relationship to Supply Flow
- General Comments
 - What is liked about current space?

Functional Space Program
An Outline of Functions – A Relationship Map

- Administration
- Clinic
- Clinic Support
- Education
- Patient Support
- Reception/Waiting
- Research
- Staff Support
- Technical Support

Functional Space Program
Spatial Relationships - Clustering

- Reception/Waiting
- Patient Support
- Clinic – Treatment and Imaging
- Clinic Support
- Technical Support
- Staff Support
- Education
- Research

Important Planning Activities
(vary with project size and scope)

- Site visits to other facilities
 - Facility design aspects – with architects
 - Equipment – with vendors
 - Reps: technologists, therapists, physics, MDs, admin
- Equipment decisions and specifications
- Equipment routes to rooms for installation - riggers
- Specific room layouts, shielding consultant/specification
- Planning for the future: potential and unknowns
- Clustering/Segregation of areas
- Communication and review of all plans: follow process
- Requirements: State, Local Building Codes; Rad Prot Regs
- Timeline for Planning and Construction

Possible Problem Areas
A large number of possibilities

- Net vs Gross space – use room templates
- Specification of shielded doors
 - Mechanical and radiological parameters
- Thru-wall penetrations (signal cables, utilities): 2", 1"
- Design/layout of operator control areas
- Laser wall-mounting systems; Signage; Interlocks
- Route for equipment entry (size and weight)
- Lead vs concrete shielding (diagnostic vs therapy)
- 18 feet slab-to-slab thickness for therapy rooms
Possible Problem Areas
A large number of possibilities

- Room accommodations for the future?
- Location of network access ports (eg, in-room)
- Designation of utility chases – they always eat up space in the end
- When possible, overstate site footprint relative to building – don’t run out of land
- Main structural columns – widest placement possible
- Corridor width – standard 8 ft (code)
- Education of participants on unique or important items

Comprehensive Cancer Center
Facility Rationale

- Cancer services spread in disparate locations throughout the institution
- Patients required to travel to multiple locations for specialty care: med + surg + rad onc; labs, etc
- Few multidisciplinary clinic locations where specialty physicians could visit the patient
- Radiation oncology facilities over 30 years old, limited for expansion opportunities: 16,000 sq ft

Comprehensive Cancer Center
Desirable Characteristics (Solutions)

- “One Stop Shop” for cancer services
- Multidisciplinary clinics – for efficient patient visits with reduced patient burden – to facilitate interactions across physician specialties
- State-of-the-art facilities for radiation oncology, medical oncology, multidisciplinary clinics, and outpatient radiology (with a cancer emphasis)
- Provision of existing/additional quality cancer support services in a pleasing and comforting environment
- Radiation Oncology: Four same-class linear accelerators (IMRT, EPID), gamma/linac radiosurgery, 3 dedicated simulators (R/F, PET-CT, MR), dedicated HDR + imaging, increase in exam rooms, academic-admin offices, computing, trainee space …(etc)

Functional Space Program – RadOne Example

<table>
<thead>
<tr>
<th>Administration</th>
<th>Activity</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair</td>
<td>Radiology</td>
<td>Radiology Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Radiation</td>
<td>Radiation Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Oncology</td>
<td>Oncology Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Surgery</td>
<td>Surgery Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Medical</td>
<td>Medical Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Nursing</td>
<td>Nursing Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Security</td>
<td>Security Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Finance</td>
<td>Finance Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Information Technology</td>
<td>Information Technology Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Pathology</td>
<td>Pathology Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Administration</td>
<td>Administration Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Pharmacy</td>
<td>Pharmacy Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Laboratory</td>
<td>Laboratory Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Business</td>
<td>Business Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Education</td>
<td>Education Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Research</td>
<td>Research Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Technical</td>
<td>Technical Lab</td>
</tr>
</tbody>
</table>

Functional Space Program – RadOne Example

<table>
<thead>
<tr>
<th>Administration</th>
<th>Activity</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair</td>
<td>Radiology</td>
<td>Radiology Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Radiation</td>
<td>Radiation Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Oncology</td>
<td>Oncology Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Surgery</td>
<td>Surgery Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Medical</td>
<td>Medical Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Nursing</td>
<td>Nursing Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Security</td>
<td>Security Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Finance</td>
<td>Finance Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Information Technology</td>
<td>Information Technology Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Pathology</td>
<td>Pathology Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Laboratory</td>
<td>Laboratory Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Business</td>
<td>Business Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Education</td>
<td>Education Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Research</td>
<td>Research Lab</td>
</tr>
<tr>
<td>Chair</td>
<td>Technical</td>
<td>Technical Lab</td>
</tr>
</tbody>
</table>

Comprehensive Cancer Center
RadiOnc Vision
“A premier academic radiation oncology department committed to reducing the burden of human cancer.”
Functional Space Program – RadOnc Example

<table>
<thead>
<tr>
<th>Category</th>
<th>Original Space (sq. ft)</th>
<th>Required Space (sq. ft)</th>
<th>No. Rooms</th>
<th>Required No. Rooms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinic</td>
<td>2,000</td>
<td>2,500</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Consults</td>
<td>1,500</td>
<td>2,000</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>CT Imaging</td>
<td>400</td>
<td>450</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>SimCenter</td>
<td>600</td>
<td>650</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Conns</td>
<td>500</td>
<td>550</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Lab</td>
<td>300</td>
<td>350</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Intercom</td>
<td>200</td>
<td>250</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Equipment</td>
<td>100</td>
<td>150</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Plan Review Comments

Comments: July, 2000
1. Group the Physics Section offices as a cluster – current plans have too many intervening offices.
2. The main staff entry must enter through the main patient waiting area. This will not work.
3. In general, it looks like a long walk from the Main Entry to the clinic area. If this length could be reduced, it might be helpful for some of our patients.
4. We suggest that “customer service” and patient flow be examined carefully to make the facility as patient-oriented and patient-friendly as possible. We suggest the following approach for patient flow and patient planning: The following approach:
 1. Patients wait in the waiting area, either with or without a companion.
 2. Patients only enter the consult/sim/treatment area when accompanied by a therapist or other staff.
5. Treatment Planning for the Gamma Knife and HDR may be too small for both planning systems.
6. Two Virtual Simulation rooms are needed in the Simulation area.
7. Placement of the Linear Accelerators must be 3.5 meter minimum to wall distance.
8. An extended length extension cord connection to the main area may allow these beam to be moved to another floor.

WFUBMC Radiation Oncology

Functional Areas
Simulation: R/F, PET-CT, MR
Treatment: 4 Linacs, GK, HDR
Reception, Exam, Nursing
Admin, Ed, Clin Trials
Dosimetry

Outpatient Comprehensive Cancer Center

Bioanatomic Imaging and Simulation Tools
GE Discovery ST PET-CT Scanner
8 slice, helical scan, LightSpeed (Ultra) CT scanner, extra large FOV, BGO detectors, 2D/3D, gated acquisition, Exact couch, LAP laser marking
GE 3T MRI Scanner – Short Bore
3.0T (short bore), 3D brain and prostate spect, mMRI, MR angio, diffusion-weighted imaging, diffusion tensor imaging, multi-phantom spect, Excite technology, LAP laser marking

Plan Review Comments

Comments: September, 2002
1. Address concerns regarding patient waiting areas and patient flow. Meet with stakeholders and potential patients to discuss patient experience. Your role: Legend required?
2. MR Layout: Ok? Assess changes to MT design. Meet with vendors. Patient access acceptable? Door sizes?
3. Linac can allow smaller machine size.
4. Location of blanket warmers? Place to one of the Storage Rooms.
5. Space controlled door access only to MR area. Meet with vendors.
6. Move doors for Storage Rooms within MRCT/CT suite Wood finishes in South unit.
7. Location of interventional ORs in main room.
8. Gamma Knife room – plans for “Model C” – vendor to review?
9. Location of Radiation Measure in HDR rooms (1620)
10. Short conduit runs for Linac rooms, HDR, and Gamma Knife?
12. Review of communication plan as of this date.
13. Review of lighting plan, especially rooms with dimmable lighting?
14. Lateral laser heights for Linac shown at incorrect height. Height needs to match isocenter height (plan A810). 14 A, B, C.
Simulation-Treatment Relationship

PET-CT
- Adjacent control, scanner, inject-wait, lab, and toilet
- 1/8 in Pb; control, scanner – adjacent waiting, scanner bkg
- 1/2 in Pb; inject-wait, toilet
- Isotope prep near on-site
- Shared Virtual Simulation
- Laser marking system
- Automated PACS archive, selective push to TPS
- Normal access security

View from Operator Entry

Patient Access, Injection Room

3.0T MR
- Adjacent control, view window, station, plus annex
- RF- and B-Field shielding – 5 gauss line containment
- Shared Virtual Simulation
- Laser marking system (work)
- Med gases, port for monitoring
- Equipment is very stable, excellent field homogeneity, meets ACR accreditation criteria for 3.0T
- Examining MRM stability
- Automated PACS archive, selective push to TPS
- Postings per magnetic field in English and Spanish
- All entry points carded for security

View from Annex Entry
Gauss Line Shielding Computation

- 5 gauss containment
- 0.5 gauss at operator – lower at PET-CT
- Institutional approval
- Performed by vendor
- Implemented at time of construction
- Surveys show effective

MR Shield Materials

“mu metal” and Copper

View from Annex

Radioactive Materials Control

Friendly to Homeland Security

Exam Rooms, Structural Columns, and Utility Chases

- Exam Rooms – Standard, ENT, and In-patient
- Structural columns have to go somewhere
- Utility chases often added to columns
 - to the demise of adjacent space
 - designate as soon as possible!

Keys For Successful Planning

- Excellent communication
 - Make written comments, dated and sent; maintain records
 - Attend all User Meetings or send designee in your place
- Ask for high-quality architects, contractors, sub-contractors
 - Probably not your choice, but Administration’s
 - Architect experience, level of expertise, match to the scope of the project – choose a good one you can work with
- A critical eye for detail – learn to read plans (A, E, P, S)
 - A: Top-view floor plans; E: Electrical P: Plumbing
 - S: Structural (concrete, shielding) C: Communications
 - Obtain Sections – vertical planes; Know “Plan North”
Keys For Successful Planning

- **Well-written [Device] specifications**: radiological treatment and imaging devices, their receipt, installation, and acceptance testing
- **Well-written [Shielding] specifications**: shielding materials, thicknesses, shielded door mechanical and radiological properties, receipt of all devices, materials, and components and match to specifications [concrete density = 147 lb/ft^3]
- Ask to be consulted on any potential changes on vendors for any radiological devices or components
- Be innovative to help solve problems – You’re a Physicist!
- Never revise anyone else’s space without their permission
- There are always constraints – make reasonable requests

Summary

- Facility Design: an important process
- Small- or large-scale
- Vision and Proposal are important
- Participants are varied – multi-disciplinary
- Communication is key
- Physicist plays a key technical role – Get Involved!
 - Equipment, facility design, shielding specifications
- Have a great time designing and building!
 (hard hat time!)

You’re Invited

Please Come Visit

Acknowledgements
- Karen Huey, WFUBMC Facilities Planning
- Ellerbe Becket, Architects
- WFU Dept of Radiation Oncology
- Industry Partners: GE Healthcare, Varian

Thank you to the Organizers, the LAC, and AAPM Staff for the great Summer School and especially the fresh Minnesota sweet corn!