NEUTRON SHIELDING DESIGN AND EVALUATIONS
Nisy E. Ipe, Ph.D.
Consultant, Shielding Design,
Dosimetry & Radiation Protection
San Carlos, CA, U.S.A.
Email: nisy@comcast.net
http://www.shieldingconsultant.com/
“Doing the right thing, doing it right”

OBJECTIVE

Look inside the black box
Think outside the box

OUTLINE
• Photoneutron Production
• Photoneutron Spectra
• Neutron Interactions
• Transport in Accelerator Head
• Neutron Yields
• Neutron Shielding Materials & TVLS
• Neutron Monitoring
• Not covered
 – Mazes
 – Laminated Barriers
 – Skyshine

PHOTONEUTRON PRODUCTION IN ACCELERATOR HEAD
• Photoneutrons produced by interaction of photon beam with accelerator components
• Produced mainly in the target, primary collimator, flattener and jaws/collimators etc.
• Typical materials are copper, tungsten, gold, lead and iron
• *Neutron production in electron mode is lower than in photon mode
 – Direct production of neutrons by electrons is at least 2 orders of magnitude lower
 – Lower electron current
• Intraoperative devices should be assessed

PHOTONEUTRON PRODUCTION

• Photon must have energy greater than binding energy of nucleus in atom
• $S_n = \text{Separation Energy}$

Neutron production in primary laminated barrier
– Lead has lower S_n than iron
 – Lead
 – Pb-207 (22.1%): $S_n = 6.74$ MeV (NCRP 79)
 – Pb-208 (52.4%): $S_n = 7.37$ MeV
 – Iron
 – Fe-57 (1.1%): $S_n = 7.65$ MeV
 – Fe-56 (91.7%): $S_n = 11.19$ MeV
– Lead has a higher neutron yield than iron
– Steel is a better choice for reducing neutron production

SCHEMATIC OF AN ACCELERATOR HEAD

Photoneutron Production
• Photon must have energy greater than binding energy of nucleus in atom
• $S_n = \text{Separation Energy}$

Neutron production in primary laminated barrier
– Lead has lower S_n than iron
 – Lead
 – Pb-207 (22.1%): $S_n = 6.74$ MeV (NCRP 79)
 – Pb-208 (52.4%): $S_n = 7.37$ MeV
 – Iron
 – Fe-57 (1.1%): $S_n = 7.65$ MeV
 – Fe-56 (91.7%): $S_n = 11.19$ MeV
– Lead has a higher neutron yield than iron
– Steel is a better choice for reducing neutron production
PHOTONEUTRON SEPARATION ENERGIES (NCRP 79)

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic Number</th>
<th>A</th>
<th>Abundance (%)</th>
<th>S(γ,n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1</td>
<td>2</td>
<td>0.92</td>
<td>2.23</td>
</tr>
<tr>
<td>Cu</td>
<td>63</td>
<td>65</td>
<td>69.2</td>
<td>10.85</td>
</tr>
<tr>
<td>W</td>
<td>180</td>
<td>182</td>
<td>0.1</td>
<td>8.41</td>
</tr>
<tr>
<td></td>
<td>183</td>
<td></td>
<td>14.3</td>
<td>6.19</td>
</tr>
<tr>
<td></td>
<td>184</td>
<td></td>
<td>30.6</td>
<td>7.41</td>
</tr>
<tr>
<td>Au</td>
<td>197</td>
<td>198</td>
<td>100</td>
<td>8.06</td>
</tr>
<tr>
<td>Pb</td>
<td>204</td>
<td>206</td>
<td>1.4</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td>207</td>
<td></td>
<td>24.1</td>
<td>8.09</td>
</tr>
<tr>
<td></td>
<td>208</td>
<td></td>
<td>52.4</td>
<td>7.32</td>
</tr>
</tbody>
</table>

PHOTONEUTRON PRODUCTION

- **Evaporation Neutrons**
 - Dominant process in heavy nuclei
 - Emitted isotropically
 - Spectral distribution is independent of photon energy for energies that are a few MeV above neutron production threshold
 - *Average energy is ~ 1-2 MeV*
 - Spectra peak at ~ 200 – 700 keV

INTEGRAL PHOTONEUTRON SPECTRA FOR 15 MEV ELECTRONS (NCRP 79)

- Photoneutron spectrum from accelerator head resembles a fission spectrum
- Spectrum changes after penetration through head shielding
- Concrete room scattered neutrons will further soften the spectrum
- Spectrum outside the concrete shielding resembles that of a heavily shielded fission spectrum
 - Average energy is significantly less than inside room
 - *Most neutrons are < 0.5 MeV in energy*
- Application—neutron monitoring

PHOTONEUTRON SPECTRA -15 MV

- Measurements with BDS® Spectrometer (threshold 10 keV to 10 MeV)
- In patient plane, outside field
 - *Average Energy = 0.43 MeV*
- Agreement within 20%
 - *BDS spectrometer can be used to measure neutrons outside beam*
- BTI, Chalk River, Canada

PHOTONEUTRON SPECTRA -15 MV

- Siemens Mevatron 15 MV: Comparison between experimental and simulated data (at 8 cm from isocenter)
ELASTIC SCATTERING

![Elastic Scattering Diagram]

INELASTIC SCATTERING

![Inelastic Scattering Diagram]

http://www.glossary.oilfield.slb.com/Display.cfm?Term=inelastic%20neutron%20scattering

NEUTRON CAPTURE

![Neutron Capture Diagram]

NEUTRON INTERACTIONS

- Almost all interactions are scatters (elastic or inelastic)
- In light materials (hydrogenous) elastic scatter helps thermalize neutrons
- Interaction with hydrogen is like a billiard ball collision
- In heavy materials only inelastic scattering reduces neutron energy
- Absorption important only at thermal energies and in a few resonances in keV region

NEUTRON INTERACTION CROSS-SECTIONS IN LEAD (NCRP 79)

- Non elastic cross section (σ_{non}) is the sum of inelastic (σ_{inel}) and ($n, 2n$) cross sections
- Inelastic scattering dominates at lower energies and ($n, 2n$) dominates at higher energies
- Pb is transparent to neutrons below 0.57 MeV

- Application: Lead sills should not be used under linac vault doors at higher energies

TRANSPORT IN ACCELERATOR HEAD

- High-Z shielding material not very effective in attenuating neutrons
- Neutrons lose energy by non-elastic, i.e. inelastic scattering and ($n, 2n$) reactions (which result in build up of fluence)
- Neutrons undergo elastic scattering in head shielding resulting in increased path length and therefore more opportunities for non-elastic reactions
- High Z shielding degrades neutron energy
- Absorbed dose or dose equivalent is therefore reduced.

*High-Z material in placed front of hydrogenous shielding makes latter more effective because of degradation of neutron energy

Application: laminated barriers and door
TRANSPORT IN ACCELERATOR HEAD

- Maximum amount of neutrons are produced inside head when collimators are completely closed
 - Application: Include small fields for neutron radiation survey
- Neutrons are nearly isotropic and penetrate head in all directions
- Leakage neutron yield at 1 m from target in target plane should be used for shielding calculations for secondary barriers

http://www.varian.com/orad/prd160.html

Neutron Energy Classification

- **Thermal:** $E_n = 0.025$ eV at 20°C
 - Typically $E_n \leq 0.5$ eV (Cd resonance)
- **Intermediate:** 0.5 eV < E_n < 10 keV
- **Fast:** $E_n > 10$ keV
- **Epithermal** $E_n > 0.5$ eV

For therapy linacs neutron spectrum can be divided into two energy regions:
- Thermal (0 – 0.5 eV)
- Epithermal (> 0.5 eV)

PHOTONEUTRON YIELD

- Yield depends on primary electron energy and target material
 - Siemens 18 MV has lower neutron yield than Varian 18 MV because of different end point energies and target material**
- Rapid rise in neutron production as primary electron energy is varied through the range of 10 - 20 MeV
- Slower rise above 25-30 MeV
- Neutron yields are summarized in NCRP 151, Appendix B: Table B-9

OUTSIDE-BEAM NEUTRON YIELD AT 1 M FROM TARGET FOR ELEKTA LINACS

<table>
<thead>
<tr>
<th>Energy (MV)</th>
<th>Neutron Yield (%Gy/Gy)</th>
<th>Neutron Yield (mSv/Gy with QF=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.003</td>
<td>0.3</td>
</tr>
<tr>
<td>15</td>
<td>0.007</td>
<td>0.7</td>
</tr>
<tr>
<td>18</td>
<td>0.015</td>
<td>1.5</td>
</tr>
<tr>
<td>20</td>
<td>0.020</td>
<td>2.0</td>
</tr>
<tr>
<td>25</td>
<td>0.030</td>
<td>3.0</td>
</tr>
</tbody>
</table>

*Elekta Site Planning Guide 4513 370 1526 06

Use these values for secondary barriers

OUTSIDE-BEAM NEUTRON YIELD AT 1 M FROM TARGET (HEAD) FOR SIEMENS LINACS

<table>
<thead>
<tr>
<th>Energy (MV)</th>
<th>Field Size (cm x cm)</th>
<th>Max. Neutron Yield (%Gy/Gy)</th>
<th>Neutron Yield (mSv/Gy with QF=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0 x 0</td>
<td>0.001</td>
<td>0.1</td>
</tr>
<tr>
<td>15</td>
<td>0 x 0</td>
<td>0.004</td>
<td>0.4</td>
</tr>
<tr>
<td>18</td>
<td>0 x 0</td>
<td>0.007</td>
<td>0.7</td>
</tr>
<tr>
<td>20</td>
<td>0 x 0</td>
<td>0.014</td>
<td>1.4</td>
</tr>
<tr>
<td>23</td>
<td>0 x 0</td>
<td>0.012</td>
<td>1.2</td>
</tr>
</tbody>
</table>

*Courtesy of Siemens Medical Solutions, U.S.A.

Use these values for secondary barriers

IN-BEAM NEUTRON YIELD AT ISOCENTER FOR SIEMENS LINACS

<table>
<thead>
<tr>
<th>Energy (MV)</th>
<th>Field Size (cm x cm)</th>
<th>Neutron Yield (%Gy/Gy)</th>
<th>Neutron Yield (mSv/Gy with QF=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20 x 20</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>15</td>
<td>20 x 20</td>
<td>0.014</td>
<td>0.003</td>
</tr>
<tr>
<td>18</td>
<td>20 x 20</td>
<td>0.022</td>
<td>0.007</td>
</tr>
<tr>
<td>20</td>
<td>20 x 20</td>
<td>0.033</td>
<td>0.012</td>
</tr>
<tr>
<td>23</td>
<td>20 x 20</td>
<td>0.049</td>
<td>0.015</td>
</tr>
</tbody>
</table>

*Courtesy of Siemens Medical Solutions, U.S.A.

Use 20 cm x 20 cm values for primary barriers

Neutron Yields Summary

- Neutrons are nearly isotropic and penetrate head in all directions.
- Leakage neutron yield at 1 m from target in target plane should be used for shielding calculations for secondary barriers.

http://www.varian.com/orad/prd160.html

PHOTONEUTRON YIELD

- Yield depends on primary electron energy and target material.
 - Siemens 18 MV has lower neutron yield than Varian 18 MV because of different end point energies and target material**.
- Rapid rise in neutron production as primary electron energy is varied through the range of 10 - 20 MeV.
- Slower rise above 25-30 MeV.
- Neutron yields are summarized in NCRP 151, Appendix B: Table B-9.

OUTSIDE-BEAM NEUTRON YIELD AT 1 M FROM TARGET FOR ELEKTA LINACS

<table>
<thead>
<tr>
<th>Energy (MV)</th>
<th>Neutron Yield (%Gy/Gy)</th>
<th>Neutron Yield (mSv/Gy with QF=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.003</td>
<td>0.3</td>
</tr>
<tr>
<td>15</td>
<td>0.007</td>
<td>0.7</td>
</tr>
<tr>
<td>18</td>
<td>0.015</td>
<td>1.5</td>
</tr>
<tr>
<td>20</td>
<td>0.020</td>
<td>2.0</td>
</tr>
<tr>
<td>25</td>
<td>0.030</td>
<td>3.0</td>
</tr>
</tbody>
</table>

*Elekta Site Planning Guide 4513 370 1526 06.

Use these values for secondary barriers.

OUTSIDE-BEAM NEUTRON YIELD AT 1 M FROM TARGET (HEAD) FOR SIEMENS LINACS

<table>
<thead>
<tr>
<th>Energy (MV)</th>
<th>Field Size (cm x cm)</th>
<th>Max. Neutron Yield (%Gy/Gy)</th>
<th>Neutron Yield (mSv/Gy with QF=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0 x 0</td>
<td>0.001</td>
<td>0.1</td>
</tr>
<tr>
<td>15</td>
<td>0 x 0</td>
<td>0.004</td>
<td>0.4</td>
</tr>
<tr>
<td>18</td>
<td>0 x 0</td>
<td>0.007</td>
<td>0.7</td>
</tr>
<tr>
<td>20</td>
<td>0 x 0</td>
<td>0.014</td>
<td>1.4</td>
</tr>
<tr>
<td>23</td>
<td>0 x 0</td>
<td>0.012</td>
<td>1.2</td>
</tr>
</tbody>
</table>

*Courtesy of Siemens Medical Solutions, U.S.A.

Use these values for secondary barriers.

IN-BEAM NEUTRON YIELD AT ISOCENTER FOR SIEMENS LINACS

<table>
<thead>
<tr>
<th>Energy (MV)</th>
<th>Field Size (cm x cm)</th>
<th>Neutron Yield (%Gy/Gy)</th>
<th>Neutron Yield (mSv/Gy with QF=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20 x 20</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>15</td>
<td>20 x 20</td>
<td>0.014</td>
<td>0.003</td>
</tr>
<tr>
<td>18</td>
<td>20 x 20</td>
<td>0.022</td>
<td>0.007</td>
</tr>
<tr>
<td>20</td>
<td>20 x 20</td>
<td>0.033</td>
<td>0.012</td>
</tr>
<tr>
<td>23</td>
<td>20 x 20</td>
<td>0.049</td>
<td>0.015</td>
</tr>
</tbody>
</table>

*Courtesy of Siemens Medical Solutions, U.S.A.

Use 20 cm x 20 cm values for primary barriers.

Neutron Yields Summary

- Neutrons are nearly isotropic and penetrate head in all directions.
- Leakage neutron yield at 1 m from target in target plane should be used for shielding calculations for secondary barriers.

http://www.varian.com/orad/prd160.html
NEUTRON SHIELDING MATERIALS

Hydrogenous materials are most effective for neutrons
- Concrete ($\rho = 2.35 \text{ g/cm}^3$)
 - Water content is important, at least 5.5% by weight
 - 2.2 MeV γ from thermal neutron capture in H
- Average γ energy from neutron capture = 3 MeV
- Maximum γ energy from neutron capture = 10 MeV
- TVL ~ 8.3"

Heavy Concrete
- Higher densities due to high-Z aggregates
- TVLs for photons lower than concrete (inverse ratio of densities)
- Typically TVLs for neutrons about the same as concrete except Ledite® with TVL of ≈ 6.4"

NEUTRON YIELD FOR VARIAN LINACS

<table>
<thead>
<tr>
<th>Energy (MV)</th>
<th>Neutron Yield ***</th>
<th>Neutron Yield ***</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 (10)</td>
<td>0.004</td>
<td>0.04</td>
</tr>
<tr>
<td>15 (16)</td>
<td>0.07</td>
<td>0.7</td>
</tr>
<tr>
<td>18 (23)</td>
<td>0.15</td>
<td>1.5</td>
</tr>
<tr>
<td>20 (25)</td>
<td>0.18</td>
<td>1.8</td>
</tr>
</tbody>
</table>

DOSE EQUIVALENT TENTH VALUE LAYERS FOR MAZE DOOR (NCRP 79)

- Fast neutrons at 100 keV,
 - Concrete TVL = 15 cm (5.9")
 - Polyethylene TVL = 4.5 cm (1.8")
- NCRP 151 suggests 4.5 cm of borated polyethylene
- Thermal neutrons:
 - Polyethylene TVL = 1.2 cm (0.47")
- Capture gamma rays
 - Lead TVL = 6.1 cm (2.4")
 - Steel TVL = 13.5 cm (5.3")
 - Concrete TVL = 46 cm (18")

SECONDARY BARRIER NEUTRON TRANSMISSION

\[B_{ln} = \frac{P d_l^2}{W Y U T} \]

- B_{ln} = Neutron transmission of barrier
- P = Design dose limit at point of interest
- W = Workload (dose at 1 m from target)
- Y = Leakage neutron yield at 1 m from target (Sv/Gy)
- U = Use Factor
- T = Occupancy Factor
- d_l = Distance from the target to point of interest

NEUTRON SHIELDING MATERIALS

- Earth ($\rho = 1.1 - 1.5 \text{ g/cm}^3$)
 - “Dirt cheap”
 - Compact earth is free from cracks and voids
 - Considerable variation in composition, density and water content
 - Unlike Europe no U.S. regulations regarding protection of fauna
- Polyethylene ($\rho = 0.92 \text{ g/cm}^3$)
 - Very effective because of H content
 - 2.2 MeV γ from thermal neutron capture in H
- Borated Polyethylene ($\rho \approx 0.92 \text{ g/cm}^3$)
 - Typically 5% boron by weight
 - High thermal neutron capture cross section for boron (3840 b/atom)
 - 0.478 MeV γ from thermal neutron capture in boron

Varian Installation Data Package June 2006

British Journal of Radiology

Jaws closed
SECONDARY BARRIER NEUTRON CALCULATION

15 MV Varian Linac
W = 600 Gy/wk
Y = 6.7 x 10^3 Sv/Gy
P = 20 μSv/wk
U = 1
T = 1
d_m = 5.49 m
TVL (concrete) = 9.84” (25 cm)

\[B_L = \frac{(20 \times 10^{-6}) (5.49)^2}{600 (0.7 \times 10^{-3}) (1/1)} = 1.43 \times 10^{-3} \]

\[N = \log B_L^3 = 2.84 \text{ TVLs} \]
Thickness of concrete = 2.84 x 9.84” ~ 28”

SECONDARY BARRIER–PHOTON CALCULATION

15 MV Linac
W = 600 Gy/wk
Leakage = 1/1000
P = 20 μSv/wk
U = 1
T = 1
d_m = 5.49 m
TVL (concrete) = 14” (36 cm), 13” (33 cm)

\[B_L = \frac{1000 (20 \times 10^{-6}) (5.49)^2}{600 (1/1)} = 1.0 \times 10^{-3} \]

\[N = \log B_L^3 = 3 \text{ TVLs} \]
Thickness of concrete = 14 + 2 x 13 = 40”
Photons dominate!

CAVEAT

• Photoneutrons are produced for linacs operating above 6.2 MeV
• Normally if such facilities are adequately shielded for photons with concrete they will be adequately shielded for neutrons
• If shielded with lead or steel, will require concrete (or polyethylene) after the high-z material
• Order of shielding is important especially for primary barriers because of neutron production in lead or steel

NIMBY = Neutrons In My Back Yard

• Neutron monitoring discussed extensively in Appendix C, NCRP 151
• Performed inside treatment room to determine
 – Neutron leakage from accelerator head
 – Neutron dose equivalent in patient plane, inside and outside primary beam
• Prudent to perform spot checks outside concrete treatment room
• Laminated barriers shall be monitored
• Door, maze entrance and any opening through shielding shall be monitored

Neutron Monitoring

• Measurement of fluence (n cm^-2)
• Measurement of dose equivalent (ambient dose equivalent) or dose equivalent rate
• Measurement of neutron spectrum

Fluence-to-Dose Equivalent Conversion Coefficients for Neutrons Derived over Past 40 Years

• Below 20 MeV differences in calculated values are negligible compared to uncertainties in estimated risk
• Two curves sit above data points because of increase in Quality Factor

With permission from NCRP Report No. 151
Instrument Calibration

- **Calibration Sources**
 - PuBe, $E_{av} = 4.2\text{ MeV}$, AmBe, $E_{av} = 4.5\text{ MeV}$
 - ^{252}Cf, $E_{av} = 2.2\text{ MeV}$
 - PuF, $E_{av} = 0.9\text{ MeV}$, PuLi, $E_{av} = 0.5\text{ MeV}$
- Use of PuBe and AmBe can lead to systematic uncertainties
- Detector calibrated with ^{252}Cf may be adequate for neutrons in primary beam
- Spectrum outside primary beam and outside room shielding is a heavily shielded photoneutron spectrum
- Assumption of fission spectrum may lead to errors in the above case

Difficulties With Neutron Monitoring Inside Treatment Room

- Photon interference from primary and leakage photons
 - Intense photon pulse overwhelms active detector
 - Photon induced responses in detectors from primary beam
- Neutron detection spread over many decades of energy ($0.025\text{ eV} – \text{ several MeV}$)
 - No single detector can accurately measure fluence or dose equivalent over entire range
 - Only passive detectors can be used, except at the outer maze area

Neutron Monitoring Outside Room

- Neutron pulse spread over several 100 μs because of moderation
- Neutron spectrum resembles heavily shielded fission source- many low energy neutrons ($100\text{'s} \text{ of keV and less}$)
- Most neutrons have energies less than 0.5 MeV outside well shielded room
- Average neutron energy at outer maze area $\sim 100\text{ keV}$
- Active and passive detectors can be used

Neutron Detectors

- **Active**
 - Moderated BF3 Detectors (outside room)
 - Rem-meters (outside room)
- **Passive**
 - Bubble Detectors (inside and outside room, NOT in primary beam)
 - Solid State Track Detectors (inside room, NOT in primary beam)
 - Activation Foils (inside room, and in primary beam)
 - Phosphorus (thermal and fast)
 - Gold (thermal)
 - Indium (thermal)

ACTIVE: FLUENCE DETECTOR

- **BF3 Proportional counter**
 - $^{10}\text{B}\left(n_{th},\alpha\right)^7\text{Li}$, $E_q = 2.31\text{ MeV}$, $\sigma = 3840\text{ barns}$
 - α and recoil ^7Li nucleus produce large pulse, orders of magnitude higher than photon pulse
 - Excellent photon rejection, low cost
 - Used outside shielded therapy rooms

MODERATED BF3 DETECTOR

- Bare BF3 detector measures thermal neutron fluence rate
- Moderated BF3 measures epithermal neutron fluence rate
- Moderator is a hydrogensous material enclosed in 0.5 mm cadmium eliminates incident thermal neutrons
- Fluence converted with appropriate coefficients to obtain dose equivalent
- Use requires knowledge of spectrum
- Useful to monitor relative variations of neutron field with time (e.g. IMRT)
ACTIVE: REM-METER

- Consists of a neutron moderator (hydrogenous like material e.g. polyethylene) surrounding a thermal detector
- Moderator slows down fast and intermediate neutrons which are then detected by the thermal detector
- Useful in radiation fields for which spectrum is not well characterized
- Important to have a rough idea of the spectrum

REM-METERS

- Energy response is determined by size and geometry
- Response is shaped to fit an appropriate fluence to dose-equivalent conversion coefficient over a particular energy range
- Most rem-meters over respond in an intermediate energy range
- Pulse pile up at high photon dose rates
- Dead time corrections at high neutron dose rates
- Provide adequate measure of dose equivalent between 100 keV and 6 MeV

COMMERCIAL REM-METERS

Thermo Electron Corporation ASP/2e NRD Neutron Survey Meter

- Portable, battery operated
- Dead Time: 10 µs nominal
- Directional response: within 10%
- Ratemeter: integrate and scalar
- Tissue equivalent from thermal to ~ 10 MeV
- Dose equivalent range: 1 - 100 mSv/h
- Background gamma rejection: up to ~ 5 Gy/h

Thermo Electron Corporation ASP/2e NRD Neutron Survey Meter

- Name of individual and facility
- Linac parameters
- Survey instrument manufacturer, model no., and date of calibration
- Measurements on plans and sections
- Set machine to desired energy
- Use smallest field size and largest field size
- Set machine to highest dose rate
- Remove phantom and repeat with phantom
- Measure at maze entrance and outside barriers for different gantry angles
- Use active detector on integrate mode
- Measure photons also

PASSIVE: ACTIVATION DETECTORS

- Neutron absorption by detector results in production of radioactive nucleus
- Radioactivity can be correlated with incident neutron fluence
- Stable and reproducible
- Photon interference must be considered
- Thermal neutron detectors
 - Gold
 - Indium
- Threshold detectors
 - Phosphorus (thermal and fast)
- Described extensively in AAPM Report No. 19

http://www.thermo.com/com/cda/product/detail/1,1055,114807,00.html
Activation Detectors - Thermal Neutron Detectors

- Bare foil and cadmium covered foil can be used for thermal neutron fluences
- Moderated foil for fast neutrons
- Gold and Indium foils counted with thin window GM, proportional counter, scintillation counter or GeLi detector

MODERATED ACTIVATION FOILS

- Moderator consists of a cylinder of polyethylene, 15.2 cm in diameter, 15.2 cm in height
- Covered with 0.5 mm of cadmium (or with boron shield)
- Moderator provides an energy independent thermal neutron fluence, proportional to incident fast fluence
- Use only at energies ≤ 20 MV because of photon induced response in cadmium and moderator lining
- Field size wide enough to irradiate entire moderator
- Distance between moderators should be 2X diameter of the moderator

ACTIVATION DETECTORS - THRESHOLD DETECTORS

- Radioactivity produced by fast neutron interaction when neutron energy is above some threshold
- Phosphorous counted with liquid-scintillation counter
- Tedious process

More moderators, and then some! Some more effective than others!

ACTIVATION FOILS (AAPM Report No. 19)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Cross Section (b)</th>
<th>Percent Abundance</th>
<th>Product Half Life</th>
<th>Decay Radiation (MeV)</th>
<th>Branching Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>107In ($^{n}_{\gamma}$)108In</td>
<td>194</td>
<td>95.7</td>
<td>54 m</td>
<td>$\gamma: 1.80$; $\beta: 0.138$ to 2.111</td>
<td>1.00</td>
</tr>
<tr>
<td>197Au ($^{n}_{\gamma}$)198Au</td>
<td>99</td>
<td>100</td>
<td>2.698 d</td>
<td>$\beta: 0.862$; $\gamma: 0.412$</td>
<td>0.99</td>
</tr>
<tr>
<td>115In ($^{n}_{\gamma}$)115S</td>
<td>Varies with energy</td>
<td>100</td>
<td>2.62 h</td>
<td>$\beta: 1.48$; $\gamma: 1.26$</td>
<td>0.99</td>
</tr>
<tr>
<td>115In ($^{n}_{\gamma}$)115P</td>
<td>0.190</td>
<td>100</td>
<td>14.28 d</td>
<td>$\beta: 1.71$</td>
<td>1.00</td>
</tr>
</tbody>
</table>

BUBBLE DETECTORS, BTI, CANADA

- Consist of minute droplets of a superheated liquid dispersed throughout an elastic polymer
- Detector sensitized by unscrewing the cap
- Neutrons strike droplets producing secondary charged particles
- Charged particles cause droplets to vaporize, producing bubbles
- Bubbles remain fixed in polymer
- Bubbles can be counted by eye or in automatic reader
- Dose is proportional to the number of bubbles

HOW A BUBBLE DETECTOR WORKS

http://www.bubbletech.ca/b_page2.htm
Bubble Detectors, Bubble Technology Industries, Canada

- Easy to use
- High sensitivity
- Reusable
- Integrating
- Allow instant visible detection of neutrons
- Isotropic response
- Variations in sensitivity within a batch
- Photon induced effects

http://www.bubbletech.ca/b_info.htm

Ipe et al, SLAC PUB 4398, 1987.

Response of BD-PND as a Function of Energy

Normalized Response of BDS as a Function of Energy

Solid State Nuclear Track Detector Neutrak® 144, Landauer, Inc.

- CR-39 (di allyl glycol carbonate) solid state track detector
- Fast neutron option: polyethylene radiator
 - Recoil proton from fast neutron interaction leaves sub microscopic damage trails
- Thermal neutron option: boron loaded teflon radiator + polyethylene radiator
 - 10B(n, α)Li
- Detector is chemically etched to reveal tracks
- Tracks are counted in an automatic counter
- Neutron dose is proportional to number of tracks
- Fast: 40 keV to 30 MeV, 0.20 mSv minimum
- Thermal: < 0.5 eV, 0.1 mSv minimum

http://www.landauerinc.com/neutron.htm

Sensitivity of Neutrak 144® as a Function of Neutron Energy

Neutron Dose Equivalent in Patient Plane for 15 MV Varian Clinac 2300 C/D

REFERENCES

Don’t judge a book by its cover!