Pediatrics: The Greatest Margin of Benefit for Protons

www.protonsforkids.org

Torunn Yock, MD MCH
Massachusetts General Hospital
Director, Pediatric Radiation Oncology
Assistant Professor, Harvard Medical School
tyock@partners.org
May 8, 2009

Goals for the talk
- The clinical cost of radiotherapy in children
- Second malignancy risks and the neutron debate
- Pediatric case selection
- MGH Pediatric Experience—including late effect data
 - Toxicities (Orbit, PM RMS population)
 - Neurocognitive outcomes in brain tumor patients
 - QOL outcomes
- Economics of protons for peds

Radiation Effects in Children
- Over 70% of pediatric cancer patients are cured.
- Late effects of radiotherapy in children can be severe.
- Radiation inhibits growth and development of whatever tissue we irradiate in a dose dependent manner, (and age dependent manner).
- Brain radiotherapy affects neurocognitive and neuroendocrine function.
- Outside the brain, RT functional and cosmetic effects
- Second malignancy

How can we minimize morbidity in the children requiring radiotherapy?
- Minimize dose to normal tissues
 - Delay radiation with chemo to allow development
 - Use surgery to try to avoid or dose reduce radiotherapy (ie medulloblastoma)
- High dose conformity is excellent with both IMRT and protons, but protons are much better for minimizing intermediate and low dose to normal tissues, which ARE significant in the kids.
- Growth and development deficits occur with as low doses as 10 Gray

Protons REDUCE the 2nd cancer risk
- Mirabell et al mathematically modeled (based on ICRP estimates) the reduction of second malignancy risk in a Parameningeal RMS and a Medulloblastoma patient.
- They found reductions in risk by factor of 2 for the PMRMS and 8-15 for the medulloblastoma case.

Mirabell et al, IJR0BP 54:284, 2002;
Attributable lifetime risk of RT induced malignancy by age and sex

- Hall postulated that due to whole body neutron scatter the RT induced malignancy rate could be increased compared with photons
- Overstated: 3 major reasons
 - Experimental data, not clinical data used. Overestimates neutron production
 - Only total body dose considered, the different integral dose from photons and protons ignored.
 - No clinically relevant data on carcinogenesis RBE of the energy neutrons generated by clinical proton facilities.
- The clinical data confirms the neutron second malignancy risks are overstated.

The Neutron Debate: 2nd cancers

2nd Malignancy Proton Study
(Chung et al, ASTRO, 2008)

- Comparison of proton patients with SEER photon patients matched by age, histology, year, and site.
- N=1006 patients, proton f/u 6.8 yrs, photons 5.2 yrs
- Crude rates:
 - 6.4% of proton patients developed second malignancies
 - 13.1% of patients treated with photon radiation developed second malignancies
- The incidence rate of second malignancies was 8.2 cancers per 1000 person years for the proton patients and 21.6 per 1000 person years for the photon patients.

Which kids get protons?

- Patients with a defined tumor or bed to treat:
 - Curable pediatric brain tumors
 - Ex. Medulloblastoma, LGGs, craniopharyngiomas, ependymoma, etc.
 - Curable solid tumors outside of the brain
 - Ex: Rhabdos, Ewings, some neuroblastomas, retinoblastomas, etc.
 - Not as good for poor prognosis patients, as late effects aren’t the issue for them.
 - However, we get “palliative” referrals because of decreased acute toxicity as well. (We don’t have beam time to accept them)
- We too often have to turn away appropriate patients.
- Allotted times fill up, and as you have seen, protons are a major advance for adults as well as children.

MGH Pediatric Proton Experience

- Currently treating ~60-65 patients per day
- Pediatric 20% of patient numbers
 - Gantry time required
 - 20 minutes (no anesthesia)
 - 30 minutes (anesthesia)
 - 1 hour (CSI) to treat a patient
- As of April 24, 2009:
 - 902 Pediatric patients
 - 367 at HCL (Harvard Cyclotron, 1974-2002)
 - 1st patient, 1974, 4 yo with RMS
 - 535 at BPTC (since 2002)
Pediatric Protocols: Morbidity Reduction

- **Medulloblastoma**: hearing, neurocognitive and endocrine endpoints
- **RMS protocol**: late effect endpoints (organ function, growth, cosmesis)
- **Other sarcoma protocol**: same as RMS
- **Retinoblastoma**: morphometric endpoints
- **QOL protocol**: PedsQL based assessment, during and after treatment
- **Coming soon**: Misc Brain Tumor Protocol: neurocognitive/neuroendocrine/neurologic endpoints
- **Germ Cell Tumor protocol**: same as above

Protons for Orbital RMS: Clinical Late Effects and a Dosimetric Comparison

- 1st 7 patients treated with protons for Orbital RMS reviewed and late effects reported
- Comparison photon plans generated
- Median f/u 6.3 yrs
- 7/7 NED at last f/u, 1 LF salvaged with enucleation and SRS. (age <1, progressed through chemotherapy)

X-Rays vs. Protons

- Protons appear to decrease the risk of most side effects compared to published accounts
 - All intact treated orbits have excellent vision (impaired in 50%+ with XRT)
 - No cataracts thus far (compare to 50%+ with XRT)
 - No keratitis/conjunctivitis thus far (30% with XRT)
 - No neuroendocrine issues (60%+ with XRT)
 - No painful dry eye (10% with XRT)
 - Only mild orbital asymmetry in our population

Clinical Late Effects with Protons for Orbital RMS

Yock et al., *IJROBP* 63:1161, 2005

Oberlin et al., *JCO* 19:197-204, 2001
Parameningeal RMS: Dose Comparison (IMRT v Protons)
(Kozak, Yock, in press IJROBP)

Results:
- Improved dose conformality of protons spared most normal tissues examined except for a few ipsilateral structures such as the parotid and cochlea.

PM RMS collective DVH difference for Protons and IMRT

![PM RMS DVH comparison graph](image)

Clinical Outcome including late effects of PM RMS
(Krejcarek, Yock, PTCOG, 2006, manuscript in preparation)

Patient population:
- 17 patients treated at HCL/BPTC 1996-2005
- Data from medical records AND referring physician survey of survivors.

Clinical Outcome for Protons in PM RMS (Krejcarek, Yock, PTCOG, 2006)

Results: Disease control
- **Median age:** 3.4 years [range, 1.5-17.6 years].
- 59% had intracranial extension (ICE).
- **Median dose:** 50.4 (CyE) [range, 50.4-55.8 CyE] for ICE pts.
- **Median time to RT:** 8 weeks (high for ICE pts).
- **3 yr FFS was 58%, 3-year OS 61%**
- 7 patients failed

Late Effect Comparison: PM RMS
(Krejcarek, Yock, PTCOG, 2006)

<table>
<thead>
<tr>
<th>Late Effect</th>
<th>Protons (MGH) N=10</th>
<th>IRSII-III N=213</th>
<th>IMRT: MSKCC N=22</th>
<th>Iowa N=17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased height</td>
<td>20%</td>
<td>46% NR</td>
<td>60%</td>
<td></td>
</tr>
<tr>
<td>Facial hypoplasia</td>
<td>60%</td>
<td>97% 5%</td>
<td>73%</td>
<td></td>
</tr>
<tr>
<td>Visual complications</td>
<td>0%</td>
<td>21% 9%</td>
<td>82%</td>
<td></td>
</tr>
<tr>
<td>Hearing loss</td>
<td>0%</td>
<td>17% NR</td>
<td>75%</td>
<td></td>
</tr>
<tr>
<td>Dentition</td>
<td>30%</td>
<td>NR</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Cognitive deficits</td>
<td>10%</td>
<td>46% 5%</td>
<td>80%</td>
<td></td>
</tr>
<tr>
<td>2nd malignancy</td>
<td>0%</td>
<td>2% 9%</td>
<td>6%</td>
<td></td>
</tr>
</tbody>
</table>

*Raney, 1999; **Wolden, 2005 (median f/u 2 years); ***Paulino, 2000

Pedi CNS tumors
Radiation to the Brain Causes Neurocognitive Deficits that Manifest with Time

- Primary impairments in:
 - Overall IQ
 - Learning
 - Attention (sustained; working memory)
 - Information processing speed/cognitive flexibility
 - Memory (visual more impaired than verbal)
- Effects could be complicated by chemotherapy—white matter injury is associated with methotrexate and other such medications (many ALL patients exhibit some neurocognitive decline without CSI).

RT Effects on Neurocognition (Merchant et al. IJROBP 2006; Merchant et al. IJROBP 2005)

- IQ Modeling study performed on Medulloblastoma/PNET patients and ependymoma patients.
- Methods: Correlated dose to brain with IQ over time.
- Results:
 - Age is important.
 - Dose to all brain was important. Less dose denoted less effect. “Each Gy of exposure had a similar effect on IQ regardless of dose level.”
 - Supratentorial brain was more sensitive than infratentorial brain to effects on IQ.

Improved IQ profile in kids with Medullo, Optic Glioma, and craniopharyngiomas

- 10 patients each treated with IMRT and planned with protons for medullos, cranios, and optic gliomas. (ependymomas too)
- Applied math models based on IQ decline and dosimetry showed decreased dose to normal brain predicted improved IQ outcome.

Pediatric Low Grade Gliomas—MGH Experience: (Yock, 2008, ISPNO Chicago)

- Patient population:
 - 36 pts with Who grade I/II gliomas age <21 treated 1995-2006
 - median age 10.5 (2-21)
 - 58% supratentorial, 31% infratentorial, 11% spinal gliomas.
 - Median dose: 52.2 (49.8 to 54 GyE).

IMRT vs 3D Proton comparison

3D Proton vs IMRT comparison
Pediatric Low Grade Gliomas—MGH Experience: (Yock, 2008, ISPNO Chicago, manuscript in progress)

Results:
- Median f/u: 39 months (1.5-12 yrs)
- At median f/u, PFS and OS was 100%
- Two pts failed at 4.1 and 4.4 yrs
- Crude rate DFS: 94%, OS 100%
- 28 neuropsych assessments, 8 patients have baseline (BL) and f/u evaluations.
 - Average BL and FU spanned 2.3 years.
 - No significant loss of IQ (and 5 other measures) detected yet.
- 38% had neuroendocrine deficits at baseline, and 47% patients developed a new deficit after radiotherapy.
Areas of Functioning Assessed
- Intelligence
- Language
- Visual-Spatial/Motor
- Attention/Executive Functioning
- Memory
- Processing Speed
- Academic Achievement
- Behavior (and Emotional)
- Adaptive Abilities

DATA TO BE PRESENTED
- Still preliminary and unpublished so it is not distributed with the syllabus

Conclusions from Neuropsychological Data
- At nearly 2 year follow-up after proton radiation, no significant change in overall neurocognitive functioning.
 - Including IQ, language, attention/working memory, cognitive flexibility, academic skills, behavior and adaptive skills.
 - Results compare favorably to reports from photon radiation treatment. (Supports Merchants math models).
- Declines seen in aspects of executive functioning: visuospatial organization and processing speed suggestive of white matter injury (also seen with photon irradiation).
- Baseline difficulties in visual organization/memory (Rey) persisted at follow-up.

Note: Preliminary, manuscript will be forthcoming authors M Pulsifer and T Yock

MGH Pediatric CNS Tumor Assessments
- Assessments twice during radiation and annually thereafter
- Assessing with:
 - PedsQL generic
 - PedsQL brain tumor module (formerly cancer and pain modules)
 - For above using both the child and parent proxy tools
- Neurocognitive assessments
 - Our cohort is 154 children assessed at treatment of whom 123 have CNS tumors, 77 with at least one year follow-up

PedsQL Scores Compared to Published Data Parent Proxy Report

Note: Preliminary, manuscript will be forthcoming authors K Kuhlthau and T Yock

Medulloblastoma: CSI
- Dose
 - 110
 - 105
 - 102
 - 100
 - 95
 - 90
 - 50
 - 10

Note: Preliminary, manuscript will be forthcoming authors K Kuhlthau and T Yock

K Meeske et al. Cancer, 2004
Proton CSI: Thecal Sac Only

Krajcovic, Yuck IJROBP 68:646-649, 2007

Medulloblastoma

Whole Brain + Posterior Fossa Boost

Protons vs Standard Photons

Excess temporal lobe dose

Medulloblastoma: Comparison of RT Technique for PF Boost

Case Mix Economics: Charges

Prostate vs CSI

Gantry treated patients fall into 3 treatment categories: simple, intermediate, and complex.

- Charge per treatment (technical only)
 - Simple: 1 unit
 - Intermediate: 1.4 units
 - Complex: 2 units

Example: prostate cancer is considered "simple", treated in 12 minutes. CSI is considered complex, treated in 60 minutes. 5 Prostate cancer treatments can be achieved in 60 minutes with 2.5x the benefit in compensation.

Ethics vs. Economics - Pediatrics

- Pediatric patients arguably stand to benefit more than other patients from proton therapy
- Reimbursement per machine time-unit is typically less (a lot less)

Prostate versus CSI: Medicare Reimbursements

- Medicare reimbursement for treatment course
 - ~ $40,460 prostate treatment course (40 tx, 12 minutes)
 - ~ $43,431 CSI/boost (30 tx, 20 CSI, 60 minutes, 10 boost, 20 minutes)

- Medicare reimbursement per hour
 - ~ $5,000/hr in the room for prostate
 - ~ $1,900/hr in the room for CSI pt

Marc Busaere and S MacDonald
Does NOT include

- Planning time for physics staff
 - 20 hours for CSI plan
 - 3 hrs for prostate plan
- Additional time for physicians (radiation oncologists and others)
- Anesthesia (time in room increases)
- Nursing (more intensive nursing needed for CSI and pedi patients)

Economics versus Ethics

- Currently, there is an economic disincentive to treat pediatrics (protons), but the benefits are clear and data is coming available to show that.
- When debating the utility of protons PLEASE PLEASE PLEASE consider the worthwhile populations outside of the prostate proton debate.

Overall Conclusions:

- The majority of pediatric solid tumor patients are cured—making late effects of therapy problematic due to impacts on growth, development and second malignancy risks.
- Proton radiation is the most conformal external beam radiotherapy available in the US, and dramatically reduces dose to normal tissues.
- The data presented here show that protons reduce the late effects including:
 - Toxicity
 - Second malignancy risks
 - Neurocognitive effects
 - AND improve QOL
- It should become the standard of care in children over the next 5-10 years

Thank you!

www.protonsforkids.org

tyock@partners.org