Clinical Implementation of the TG-51 Protocol

David Followill
Radiological Physics Center
Houston Texas
2009 AAPM Summer School
Educational Objectives

- Improve your understanding of how to implement TG-51 to determine the dose accurately.
- Provide details on how to make your job easier to yield accurate doses from TG-51.
- Reduce the possibility of errors in beam calibrations.
Current Implementation Status

TOTAL 1494 of 1623 ACTIVE INSTITUTIONS (92%)

Only 8% to go
What’s the Holdup?

- New Air Kerma standard
 - TG-51 ≈ TG-21 depending on the chamber
- Time and effort required (everyone is very busy)
- New equipment requirements (chambers and phantoms)
New Protocols and Havoc

BEAM CALIBRATION
RPC Onsite Visits

Photons
Electrons
TG-21 Implementation
TG-51 Implementation

Percent within 3% Criterion

YEAR

Why the problems?

- Most modern accelerators/beam energy combinations have the same dosimetry parameters
- The one parameter that changes with time and is subject to human intervention is beam calibration
 - Training
 - Protocol interpretation/misunderstandings
 - Lack of practice (once a year)
Equipment Needs

- Properly sized “liquid” water phantom (30x30x30 cm³)
 - Don’t use the scanning tank
 - Adequate scatter conditions
 - Easy reproducible setup
Chamber Holder and Positioner

- **Holder**
 - Versatile to hold different chambers
 - Rigid (sensitive volume parallel to water surface)
 - No lateral displacement with depth
 - Accurate sub-millimeter placement at any depth
 - Verify accuracy prior to initial use
 - Remote electronic control is nice
Ion Chambers

- TG-51 ion chambers vs NEW ion chambers
 - Most are similar in design but now waterproof
 1. Wall material
 2. Radius of air cavity
 3. Presence of Al electrode
 4. Wall thickness
 - AAPM working group to determine the k_Q, k_{R50}, k_{ecal} for new chambers
Ion Chambers - Photons

- **ADCL calibrated 0.6 cm³**
 - Smaller volume chambers (> 0.1 cm³) okay if traceable to another 0.6 cm³
 - **NO parallel plate chambers**
 - Waterproof (Go ahead and get one)
 - Most common: Exradin A12, PTW 30013
 - Non waterproof needs a 1mm PMMA sleeve that does not leak!
Ion Chambers - Electrons

- Parallel-plate or cylindrical chambers okay
 - Cylindrical for energies > 6 MeV per protocol \((R_{50} \geq 2.6 \text{ cm})\)
 - Cylindrical = parallel plate if care in placement

<table>
<thead>
<tr>
<th></th>
<th>P11</th>
<th>PTW Roos</th>
<th>Welhoffer Roos</th>
<th>Marcus</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.008 (n=1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.002 ± 0.1% (n=3)</td>
<td>1.000 (n=1)</td>
<td>0.996 ± 0.3% (n=2)</td>
<td>1.002 (n=1)</td>
</tr>
<tr>
<td>7</td>
<td>1.009 (n=1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.006 (n=1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.003 ± 0.1% (n=2)</td>
<td>0.998 (n=1)</td>
<td>0.996 (n=1)</td>
<td>1.000 (n=1)</td>
</tr>
<tr>
<td>12</td>
<td>1.000 ± 0.1% (n=3)</td>
<td>0.997 ± 0.2% (n=2)</td>
<td>0.996 (n=1)</td>
<td>1.004 ± 0.1% (n=3)</td>
</tr>
<tr>
<td>16</td>
<td>1.003 ± 0.2% (n=3)</td>
<td>0.998 ± 0.2% (n=2)</td>
<td>1.001 ± 0.0% (n=2)</td>
<td>1.001 ± 0.2% (n=2)</td>
</tr>
<tr>
<td>20</td>
<td>1.000 ± 0.1% (n=4)</td>
<td>1.000 (n=1)</td>
<td>1.000 ± 0.1% (n=2)</td>
<td>1.000 (n=1)</td>
</tr>
</tbody>
</table>

- Always use a parallel plate chamber for 4 MeV beams
- Caution as to where the inside surface of the front window is located
Ion Chambers - Electrons

- All chambers must have an ADCL calibration coefficient EXCEPT PARALLEL PLATE CHAMBERS

 - AAPM recommendation is to cross calibrate parallel plate chamber with cylindrical chamber in a high energy electron beam (worksheet C *a la* TG-39)

 - ADCL $N_{D,w}$ – **good** TG-51 k_{ecal} – **bad**

 - Use of $(N_{D,w} \cdot k_{ecal})$ results in an error of 1-2%

 - ONE EXCEPTION – Exradin P11 seems to be okay

 - AAPM working group determining new k_{ecal} values
Measurement Techniques

- Accurate placement of cylindrical ion chamber at depth
 - Whether manual or electronic motor driven there must be a starting reference point

Two techniques

1. Surface method
2. “Cowboy” method

- Accuracy depends on cutting ruler
- Used for reference starting point
- Periodic check of depth

Cut ruler down to minimize surface area
U-shape plastic attached flush with end of ruler
Weights
Ion chamber
Cut ruler by the chamber radius and wall thickness
Measurement Techniques

- Parallel plate ion chambers
 1. Flat surface makes it easy to measure depth
 2. Accurate ruler needed
 3. Must know where the inside surface of the front window is located

Spokas Parallel Plate Chamber
Model A11, P11 or T11

- Collecting Volume: 0.8 cc
- Nominal Calibration Factor: 5.5 R/nC (TG-21)
- Nominal Calibration Factor: 48.3 Gy/μC (Air Kerma)

Centroid of Collecting Volume: 2.0 mm from window surface
Collector Diameter: 20.0 mm
Window-Collector Gap: 2.0 mm
Window Thickness: 1.0 mm
Window, Collector and Guard Material:
 - A11 – CS52 Styrofoam air-equivalent plastic
 - P11 – D400 pc
 - T11 – A150 Sh
 - Stem: 11.1 mm OD cm long; removable
 - Waterproof: Yes, a
 - Venting: Through T body and running th inside tubing.
 - Buildup Caps Avai chamber window

- Model 11
Effective Point of Measurement and Beam Quality

Photons

- **10 cm** calibration depth

“point of measurement” is the center electrode of a cylindrical chamber and the front window of a parallel plate chamber

- \(\%dd(10)_x\) beam quality

Electrons

- \(d_{ref}\)

Beam quality should always be measured using the “effective point of measurement”

- \(0.6r_{cav}\) shift to effective point
- **100 cm** beam quality SSD
- \(R_{50}\)
- **10 x 10 cm\(^2\)** field size

- \(0.5r_{cav}\)
- **100 cm**

\(\geq 10 \times 10 \text{ cm}^2\)
Effective Point of Measurement

Water surface

Effective depth

Physical depth

Cylindrical

Parallel plate
“Get the lead out”

- Photon beams (≥ 10 MV)
 - Lead sheet 1 mm \pm 0.2 mm
 - 30 or 50 cm from phantom surface
 - Determine $\%dd(10)_{Pb}$ (percent values not fractional)
 - $\%dd(10)_x$ should be within 2.5% of $\%dd(10)_{Pb}$

- Interim alternative (No Lead Sheet)
 - Measure $\%dd(10)$ without lead and use TG-51 eq 15
 - Introduces only 0.1-0.2% error in k_Q
 - Saves time and minimizes chance of damage to chamber
Beam Quality Conversion Factors

- Photons
- Tabular values much easier to read
- My favorite part
- Figures have a great deal of overlay
- For spreadsheets plot the tabular data
- Be sure to have an independent check
Beam Quality Conversion Factors

- Electrons

Only small figures, no tables

Good figures at:

Beam Quality Conversion Factors

- Electrons – 4 MeV beams ($R_{50} < 2.0$ cm)
 - Only use parallel plate chamber
 - Need to extrapolate curve

- Equation good down to 1 cm
Charge Measurements

\[M = P_{ion} \cdot P_{TP} \cdot P_{elec} \cdot P_{pol} \cdot M_{raw} \]

- \(P_{TP} \) correction factor
 - Mercury thermometers and barometers most accurate
 (but they are no longer kosher)
 - Hg barometers T&G corrections needed
 - Quality aneroid or digital can be used
 - Check annually against a standard
 - Digital purchased with a calibration does not mean accurate
 but rather what it read at certain pressures or temperatures
Charge Measurements

- **P_{elec}** correction factor
 - ADCL calibration for each scale needed

- **P_{pol}** correction factor
 - Change polarity requires irradiation (600 to 800 cGy) to re-equilibrate chamber
 - Use of eq 9 in TG-51 requires that you preserve the sign of the reading or

 \[
 P_{\text{pol}} = \frac{|M_{\text{raw}}^+| + |M_{\text{raw}}^-|}{2|M_{\text{raw}}|}
 \]
 - P_{pol} should be near unity for cylindrical chambers and slightly larger correction for parallel plate chambers
Charge Measurements

Monitor's drift due to Ktp & machine fluctuation
(All other chamber data are norm to monitor)
Charge Measurements

- P_{ion} correction factor
 - Use eqs. 11 and 12 to calculate P_{ion}
 - As a check if using $V_H/V_L = 2$ (within 0.1%)
 - Pulsed beam: $P_{\text{ion}} = \frac{M_H}{M_L}$ if $M_H/M_L < 1.02$
 - Continuous beam: $P_{\text{ion}} = \{(M_H/M_L - 1)/3\} + 1$

P_{ion} depends on chamber, beam energy, linac and beam modality
 - Tends to increase with energy
Electron beam gradient \((P_{gr})\) correction factor

- No correction for photon beams since correction included in \(k_Q\)
- Only for cylindrical ion chambers
- Ratio of readings at two depths

\[
P_{gr} = \frac{M(d_{ref} + 0.5r_{cav})}{M_{raw}(d_{ref})}
\]

The reading at \(d_{ref} + 0.5r_{cav}\) should have the same precision as the reading at \(d_{ref}\) since:

\[
\text{Dose} = M(d_{ref}) \cdot \text{(many factors)} \cdot \frac{M(d_{ref} + 0.5r_{cav})}{M(d_{ref})}
\]
Charge Measurements

- Electron beam gradient (P_{gr}) correction factor
 - $E < 12$ MeV; $P_{gr} > 1.000$
 - $E \geq 12$ MeV; $P_{gr} \leq 1.000$
 - Why? Because for low electron energies $d_{ref} = d_{max}$ and this places the eff. pt. of measurement in the buildup region thus a ratio of readings greater than 1.000.
 - At higher electron energies d_{ref} is greater than d_{max} and as such the eff. Pt. of measurement is on the descending portion of the depth dose curve thus a ratio of readings less than 1.000.
Charge Measurements

Physical depth

Effective depth

\[\text{Effective depth} = \frac{M(d_{\text{ref}} + 0.5r_{\text{cav}})}{M_{\text{raw}}(d_{\text{ref}})} \]
Charge Measurements

Physical depth

Effective depth

\[\frac{M(d_{\text{ref}} + 0.5r_{\text{cav}})}{M_{\text{raw}}(d_{\text{ref}})} \]
Clinical Depth Dose

- Always measured using the effective point of measurement
 - Re-measurement not suggested for existing Linacs
 - New Linacs or beams should incorporate shift
- Always use the clinical depth dose to make the correction from the calibration depth to the reference depth
 - Measurement at depth will always equal calculation at the same depth (use same data to go to d_{max} as is used to go back down to reference depth)
%dd(10)_x = 67.0%
Annual QA %dd_{10} = 67.4%
TPS %dd_{10} = 66.6% (mu calc)
Clinical Depth Dose

- For photons – do not use the beam quality value \(\%dd(10)_x \) to take dose from 10 cm to \(d_{\text{max}} \)

- For electrons – depth dose correction for \(\geq 16 \) MeV is significant (\(~98.5\% - 16 \text{ MeV} \) and \(~95.5\% - 20 \text{ MeV}\))

 - Caution!!! Super big problem if you use \% depth ionization data (3-5\% error for high energy electron beams)
Summary

- Implementation is straightforward
 - Must read the protocol and follow the prescriptive steps
 - Many suggestions to clarify confusion have been made
 - RPC will assist you and answer questions

- Differences between TG-51 and other protocols such as TG-21 and TRS 398 are minimal.