Vetting Default Protocols:
How can Industry & Academia Work Together?

Richard L. Morin, PhD, FAAPM
Department of Radiology
Mayo Clinic Florida
Jacksonville, FL
Questions

- How are vendor default scanner protocols determined?
- Are they always optimal?
- Are they ever wrong?
- How can academia and professional societies have an impact on default protocols?
Example of “not-optimal”

- Protocols sometimes tend to be European-centric
 - “First thing we do with their scanner is increase all the default dose levels and choose a sharper kernel”
Some general observations

- **U.S.**
 - Highly litigious
 - Diagnostic accuracy is top priority
 - High obesity rates
- **Europe/Asia**
 - Litigation less common
 - Dose limitations are top priority
 - Lower obesity rates

- **reference mAs**
 - Chest – 170-180 mAs
 - Abd – 200-240 mAs
 - B40 kernel
- **reference mAs**
 - Chest – 130 mAs
 - Abd – 160 mAs
 - B30 kernel
THE AMERICAN EXPERIENCE

• A number of years ago, a colleague said to me

 – “I’ve gotten sued for missing findings on suboptimal images, but never for using too much mA”
Another example of “not-optimal”

- Selecting the optimal detector configuration
Prospective images at 5mm
Scanner: 16-channel
Detector: 8 x 2.5
Pitch = 0.875

Retrospective images at 2.5mm
Bubble Phantom
(side view)
Same as patient study

Pitch: 0.875, Detector: $8 \times 2.5\text{mm}$, Beam: 20 mm

SE 2, IM 2, 5mm

SE 3, IM 3, 2.5mm
Change detector (incr. Z sampling), retain beam width

Pitch: 1.375, Detector: 16×1.25mm, Beam: 20mm

Effective mAs = 109 (decreased from 171)

SE 10, IM 2, 5mm
SE 11, IM 3, 2.5mm
Change detector (incr. Z sampling), retain beam width

Pitch: 1.375, Detector: 16×1.25mm, Beam: 20mm

Effective mAs = 109 (decreased from 171)

SE 10, IM 2, 5mm

SE 11, IM 3, 2.5mm
Z-axis Sampling Summary

- In general, use smallest detector spacing possible!
- More powerful than decreasing pitch to reduce helical artifacts
- Beam width may change with detector configuration
- Changes in beam width and/or pitch will affect total scan acquisition time and may affect dose
Example of “wrong”

- Initial multi-slice scanner (4-slice)
 - Shorter tube to isocenter distance than same vendor’s single-slice scanner
 - Required 20% less mAs at given kVp and slice width to achieve the same noise vs. single slice scanner
Routine Head Exam for ACR Accreditation

- **Scanner default protocol:**
 - Used thinnest collimation setting
 - Factor of 2 dose penalty on early 4-slice systems compared to single slice 5-mm scan
 - Meant to use same mAs as single-slice protocol (170 mA, 2 sec)
 - Used factor of 2 higher mAs by mistake (340 mA, 2 sec)

- **Result:**
 - Single-slice scanner default CTDIvol = 45 mGy
 - Multi-slice scanner default CTDIvol = 190 mGy
 - Several sites submitted to ACR using these settings/doses
Vendor Supplied Protocols

• Methods
 – Physicists & Engineers
 – Partners
 – Follow-up
Vender Supplied Protocols (con’t)

• Options
 – STOP
 – BAU
 – Generic Groups
 – National Consensus
Vendor Supplied Protocols (con’t)

- Tradeoffs
 - Partners feedback
 - Regulations
 - Innovation
 - Scientific Community
 - Sales
Literature

- Timelines
- Evidence Based
- Vender Proprieties
- Cottage Industry
- Culture
Exam 542148895-1 has perfusion time 39 seconds, KVP (0018, 0060) 80 kV and Exposure (0018, 1152) 270 mAs

The use of this registry data is intended for the sole use of Mayo Clinic individuals or groups engaged in intramural, internal quality improvement. This information contains quality data and is confidential and protected from disclosure under applicable state law, including without limitation, Minnesota Statutes §§ 145.61-.67; Florida Statutes §§ 766.101-1016, 395.0191,395.0193, and 395.0197; Arizona Revised Statutes §§ 36-445-445.04 and 36-2401-2404; Iowa Code ? 147.135; and Wisconsin Statutes §§ 146.37-.38. The information may be released internally only to the extent necessary to carry out the purposes of internal quality improvement. ?2009: Mayo Clinic
Future

Things Will Get Better
Future

- Protocol Review Committee
- Team Decisions
- Image Quality & Dose Discussions
- Public Workshops & Forums
- AAPM protocol web site
- Widespread transparent vetting of details
- Vendor & Imaging Community Solutions
Future