Assessing Radiation Dose: How to Do It Right

Michael McNitt-Gray, PhD, DABR, FAAPM
Professor, Department of Radiology
Director, UCLA Biomedical Physics Graduate Program
David Geffen School of Medicine at UCLA
mmcnittgray@mednet.ucla.edu
CT –Specific Dose Definitions

• CTDI and its cousins
 – CTDI_{100}
 – CTDI_{w}- weighted
 – CTDI_{vol} -> DLP -> Effective Dose

• Dose Reports

• Future Dose Metrics
 – TG 204
 – TG 111/200/ICRU
 – IEC
(CTDI) – defined

- CTDI Represents
 - **Average dose** along the z direction
 - at a given **point** \((x,y)\) in the scan plane
 - over the **central scan of a series of scans**
 - when the series consists of a **large number of scans**
 - **separated by the nominal beam width** (contiguous scanning)
CTDI Phantoms

- Body (32 cm diam), Head (16 cm diam)
- Holes in center and at 1 cm below surface
- 10 cm diameter also available in some models
CTDI$_{100}$

- Measurement is made with a 100 mm chamber:
- **CTDI**$_{100} = \frac{1}{NT} \int_{-5\text{cm}}^{5\text{cm}} D(z) \, dz$

 \[= \frac{(f*C*E*L)}{(NT)}\]

- **f** = conversion factor from exposure to dose in air, use 0.87 rad/R
- **C** = calibration factor for electrometer (typical = 1.0, 2.0 for some)
- **E** = measured value of exposure in R
- **L** = active length of pencil ion chamber (typical = 100 mm)
- **N** = actual number of data channels used during scan
- **T** = nominal width of one channel
CTDI$_{100}$

- **CTDI**$_{100}$ Measurements are done:
 - In Both Head and Body Phantoms
 - Using ONLY AXIAL scan techniques
 (CTDI = Area under the single scan dose profile)
 - At isocenter and at least one peripheral position in each phantom

![Diagram showing dose distribution in head and body phantoms]
\(CTDI_w \)

- \(CTDI_w \) is a **weighted average** of center and peripheral \(CTDI_{100} \) to arrive at a single descriptor

- \(CTDI_w = \frac{1}{3}CTDI_{100,\text{center}} + \frac{2}{3}CTDI_{100,\text{peripheral}} \)
$CTDI_{vol}$

- Calculated, not measured directly
- Based on $CTDI_w$
- Measured from a single axial acquisition but calculated with a pitch value.
 - Think of this as the pitch that you would have used if you were performing a helical scan.
- (NOTE: CTDI not defined for helical acquisition)
\[CTDI_{vol} \]

- \(CTDI_{vol} = \frac{CTDI_w}{Pitch} \)
CTDInvol in Context of AEC

• When Tube current modulation is used:
 – CTDInvol reported is based on the average mA used throughout the scan
 – Essentially the CTDInvol at that kVp, bowtie, collimation, rotation time and then using the average mA (CTDI is very linear with mAs)
DLP – defined

- Dose Length Product is:
 - $\text{CTDI}_{\text{vol}} \times \text{length of scan (in mGy*cm)}$

- Found in most “Dose Reports”

- Includes any overscan (extra scanning for helical scans)
Effective Dose

- Most CT scans are partial irradiations of body
- How to compare the effects of different exposures to radiosensitive organs?
- Effective Dose takes into account
 - Absorbed Dose to specific organs
 - Radiosensitivity of each organ
- NOTE: Eff. Dose is NOT intended for dose to an individual; intended for populations
Effective Dose

\[E = \sum_T (w_T \cdot w_R \cdot D_{T,R}) \]

- \(w_T \): tissue weighting factor (next page)
- \(w_R \): radiation weighting coefficient (1 for photons)
- \(D_{T,R} \): average absorbed dose to tissue \(T \)
- Units are: SI - Sieverts (Sv); English -rem
- 1 rem = 10 mSv; 1 Sv = 100 rem
Effective Dose

<table>
<thead>
<tr>
<th>Tissue</th>
<th>ICRP 60 Tissue weights (w_T)</th>
<th>ICRP 103 weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gonads</td>
<td>0.20</td>
<td>0.08</td>
</tr>
<tr>
<td>Red Bone Marrow</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Colon</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Lung</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Bladder</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Breast</td>
<td>0.05</td>
<td>0.12</td>
</tr>
<tr>
<td>Liver</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Esophagus</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Skin</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Bone Surface</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Brain</td>
<td>(part of remainder)</td>
<td>0.01</td>
</tr>
<tr>
<td>Salivary Glands</td>
<td>(part of remainder)</td>
<td>0.01</td>
</tr>
<tr>
<td>Remainder</td>
<td>0.05</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Estimating Effective Dose

To estimate effective dose accurately, you would need to ESTIMATE DOSE TO EACH RADIOSENSITIVE ORGAN !!!

\[E = \sum_T (w_T \times D_{T,R}) \]

\[w_R = 1 \]

Difficult to do accurately
Estimating Effective Dose

- **Computer Software**
 - Based on Monte Carlo simulations
 - ImPACT calculator
 - Impactdose calculator

- **K Factors (Jessen) based on DLP**
 - $E = \text{DLP} \times k$ (with k in $\text{mSv}/(\text{mGy} \cdot \text{cm})$)
 - $k = 0.0023$ for head exams, $k = 0.015$ for abdomen
 - See AAPM report 96 for all k factors
What is a typical reference?

- 3 mSv per year background radiation
 - Natural sources such as radon and cosmic rays
- Mettler et al now estimate 3 mSv per year from medical procedures as well
- 6 mSv total average annual exposure to US Population
ACR CT Dose Reference Values

• CTDI_{vol}
• Two levels:
 – Reference level and Pass/Fail level
 – If Reference Level is exceeded, then sites will be asked to consider some dose reduction
 – If Exceed Pass/Fail level, then Fail
• Exam | Ref Level | Pass/Fail Level
 – Adult Head | 75 mGy | 80 mGy
 – Adult Abdomen | 25 mGy | 30 mGy
 – Pediatric (5y/o) Abd | 20 mGy | 25 mGy
 – Pediatric Head | 45 mGy
CTDI$_{\text{vol}}$ and DLP

- CTDI$_{\text{vol}}$ reported on the scanner
 - (though not required in US)
- Is Dose to one of two phantoms
 - (16 or 32 cm diameter)
- Is NOT dose to a specific patient
- Does not tell you whether scan was done “correctly” or “Alara” without other information (such as body region or patient size)
- MAY be used as an index to patient dose with some additional information (later)
- See McCollough et al “CT Dose Index and Patient Dose : They Are Not the Same Thing. Radiology 2011; 259:311–316
Scenario 1: No adjustment for patient size

100 mAs

32 cm phantom

$\text{CTDI}_{\text{vol}} = 20 \text{ mGy}$

100 mAs

32 cm phantom

$\text{CTDI}_{\text{vol}} = 20 \text{ mGy}$

The CTDI_{vol} (dose to phantom) for these two would be the same.
Scenario 2: Adjustment for patient size

The CTDI$_{vol}$ (dose to phantom) indicates larger patient received 2X dose.

50 mAs

32 cm phantom

CTDI$_{vol} = 10$ mGy

100 mAs

32 cm phantom

CTDI$_{vol} = 20$ mGy
Did Patient Dose Really Increase?

For same tech. factors, smaller patient absorbs more dose

- Scenario 1:
 - CTDI is same but smaller patient’s dose is higher
- Scenario 2:
 - CTDI is smaller for smaller patient, but patient dose is closer to equal for both
\textbf{CTDI}_{vol}

- Not patient Dose
- By itself can be misleading

- CTDI\textsubscript{vol} should be recorded with:
 - Description of phantom size (clarify 16 or 32 cm diameter)
 - Description of patient size (lat. Width, perimeter, height/weight, BMI)
 - Description of anatomic region
How to Calculate mSv?

• One approach (actually an approximation):

 \[E = DLP \times k \]

 Where

 \(E \) = Effective Dose in mSv

 \(DLP \) = Dose Length Product in mGy*cm

 \(k \) = conversion coefficient in mSv/mGy*cm

• Formula is based on a curve fit for several scanners (circa 1990) between \(E \) and \(DLP \)

• \(k \) values are based on ICRP 60 organ weights
DLP Approach to Calculate mSv

- DLP approach
 - DLP comes from scanner
 - CTDIvol x length of scan
 - k's are known
 - (e.g. .0021 for adult head, .015 for abdomen, etc.)
 - Different k factors for peds
- Can be calculated for each patient….right?
DLP Approach to Calculate mSv

- Any assumptions here?
 - Standard Sized Patient for adults
 - 20-30 year old MALE, 70 kg, 5’7” tall
 - Is that who you just scanned?
 - Based on scanner reported CTDIvol
 - Dose to homogenous acrylic cylinder
 - (NOTE: for pediatric, some scanners currently report dose to 16 cm, others to 32 cm phantom)
DLP Approach to Calculate mSv

• A few examples
Patient Protocol Page from Siemens S16

<table>
<thead>
<tr>
<th>Scan</th>
<th>KV</th>
<th>mAs / ref.</th>
<th>CTDIvol</th>
<th>DLP</th>
<th>TI</th>
<th>cSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Position F-SP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chest/ab Topo</td>
<td>1</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chest</td>
<td>2</td>
<td>80</td>
<td>77 / 55</td>
<td></td>
<td>39</td>
<td>0.5</td>
</tr>
<tr>
<td>PreMonitoring</td>
<td>3</td>
<td>80</td>
<td>25</td>
<td></td>
<td>1.47</td>
<td>1.5</td>
</tr>
<tr>
<td>I.V. Bolus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring</td>
<td>4</td>
<td>80</td>
<td>25</td>
<td></td>
<td>4.40</td>
<td>0.5</td>
</tr>
<tr>
<td>Arterial</td>
<td>7</td>
<td>80</td>
<td>78 / 55</td>
<td></td>
<td>1.73</td>
<td>0.5</td>
</tr>
<tr>
<td>Venous</td>
<td>8</td>
<td>80</td>
<td>73 / 55</td>
<td></td>
<td>1.90</td>
<td>0.5</td>
</tr>
</tbody>
</table>

M, 3Y

16-Oct-2009 13:44

Ward:
Physician:
Operator:

Total mAs 3048 Total DLP 122

UCLA

Sensation 16
CT 2006G
BTW- Which Phantom Was Used for CTDI

- Not clear in this report
- Subsequent Software Upgrades, report clearly indicates 16 or 32 cm phantom
Which Phantom Was Used for CTDI

- **Currently:**
 - ALL HEADS (Adult/Peds) – 16 cm phantom
 - ALL ADULT BODY – 32 cm phantom

- **PEDS BODY (CAUTION!!!!):**
 - Siemens, Philips: report based on 32 cm phantom
 - Toshiba: report based on 16 cm phantom
 - GE**: report 16cm OR 32 cm (depends on SFOV)
 - CTDI_{vol}s differ by a factor of approx 2.5

- So, previous example, $\text{CTDI}_{\text{vol},32} = 1.71 \text{ mGy}$
- If report used 16 cm phantom, $\text{CTDI}_{\text{vol},16} \sim 4.1 \text{ mGy}$
- **PLEASE BE AWARE** (this affects DLP, too)
So, what should be reported?

<table>
<thead>
<tr>
<th>Individual CTDI and DLPs</th>
<th>Total DLP?</th>
<th>Total CTDIvol?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan</td>
<td>KV</td>
<td>mAs / ref.</td>
</tr>
<tr>
<td>Patient Position F-SP</td>
<td>1</td>
<td>80</td>
</tr>
<tr>
<td>Chest/ab Topo</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>Chest</td>
<td>3</td>
<td>80</td>
</tr>
<tr>
<td>PreMonitoring</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>I.V. Bolus</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>Monitoring</td>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td>Arterial</td>
<td>7</td>
<td>80</td>
</tr>
<tr>
<td>Venous</td>
<td>8</td>
<td>80</td>
</tr>
</tbody>
</table>

Total mAs 3048 | Total DLP 122
Depends….What Do You Need/Want to Do?

• Meet State/Local Regulations?
• Record/Report Dose because it is the “right thing to do”?
 – Record CTDIvol
 – Record “Patient Dose”
 – (Remember, they are NOT the same thing)
Ca SB 1237 – Important Clauses

- 115111. (a) Commencing July 1, 2012.....
- (b) The facility conducting the study shall **electronically send each CT study and protocol page** that lists the technical factors and dose of radiation to the electronic picture archiving and communications system.
 - Patient Protocol page or DICOM RDSR fulfills this requirement

- (d) Subject to subdivision (e), the radiology report of a CT study shall include the dose of radiation by either **recording the dose within the patient’s radiology report** or attaching the protocol page that includes the dose of radiation to the radiology report.
 - Not all scanners are capable of CT RDSR
 - Would be nice to electronically integrate with radiology report

- (f) For the purposes of this section, dose of radiation shall be defined as one of the following:
- (1) The computed tomography index volume (CTDI vol) and dose length product (DLP), as defined by the International Electrotechnical Commission (IEC) and recognized by the federal Food and Drug Administration (FDA).
- (2) The dose unit as recommended by the American Association of Physicists in Medicine.
To Comply With State Law

• We only need to report CTDI and DLPs
• But which ones?
 – Individual CTDI/DLPs?
 – Totals?
 – Both?
When Does It Make Sense to Add CTDI_{vol}?

- When same anatomic region is scanned repeatedly and assumptions of CTDI apply (table movement, large anatomic region such as head, chest, abdomen, etc.)
- Examples:
 - Non-con chest followed by post-contrast chest
When Does It NOT Make Sense to Add $CTDI_{vol}$

- Different anatomic regions
- No table motion (perfusion scan)
- Examples:
 - chest followed by abdomen/pelvis
When Does It Make Sense to Add DLPs

- Similar to CTDIvol’s
- When same anatomic region is scanned repeatedly and assumptions of CTDI apply (table movement, large anatomic region such as head, chest, abdomen, etc.)
- Examples:
 - Non-con chest followed by post-contrast chest
When Does It NOT Make Sense to Add DLPs

- Again, Similar to CTDIvol’s
- Different anatomic regions
- No table motion (perfusion scan)
- Examples:
 - Head followed by C/A/P
 - Even Chest followed by abdomen/pelvis
Limitations to CTDI

• Is CTDI_{vol} Organ Dose?
AAPM TG 204

Size-Specific Dose Estimates (SSDE) in Pediatric and Adult Body CT Examinations

Report of AAPM Task Group 204, developed in collaboration with the International Commission on Radiation Units and Measurements (ICRU) and the Image Gently campaign of the Alliance for Radiation Safety in Pediatric Imaging
AAPM TG 204

The report also describes coefficients based on Lateral Width (from PA CT radiograph) and AP thickness (from Lat CT radiograph).
Does CTDI_{vol} Indicate Peak Dose?

- CTDI$_{\text{vol}}$ is a weighted average of measurements made at periphery and center of cylindrical phantom.
- Defined to reflect dose from a series of scans performed with table movement.
Does CTD_{vol} Indicate Peak Dose?

- CTD_{vol} is a weighted average of measurements made at periphery and center of cylindrical phantom
- Defined to reflect dose from a series of scans performed with table movement
- Is not patient dose (not even skin dose)
- Typically OVERestimates skin dose in cases where scan is performed with no table movement (e.g. perfusion scans)

- BTW, AAPM TG 111 dose metric will do a better job here (specifically defines a measure with no table motion);
 - But still not patient dose (Dose to phantom)
Reporting Dose: How To Do It Right?

- **Phase 4:** DICOM SR, Body Size Adjusted, *Organ Doses*; Auto-Insert into Radiology Report
- **Phase 3:** DICOM SR, *Body Region and Size Adjusted*, Auto-insert into Radiology Report
- **Phase 2 (We WANT to be Here before July 1, 2012):**
 - DICOM SR, *Auto-insert into Radiology Report*
- **Phase 1 (We are Part of the Way Here):**
 - DICOM SR, Dictated into Radiology Report
 - Some scanners create DICOM SR, not easy to read and dictate
- **Phase 0 (We Are Currently Here):**
Roadmap for Phased Approach to Reporting Radiation Dose

Level 0: Reporting CTDIs, DLPs
 - Does NOT have adjustment for patient size
 - Just Adding CTDIs and/or DLPs may be inappropriate

Level 1: Adjust CTDIs, DLPs for Patient Size
- Needs Consistent Metric of Patient Size
 - Still need method to determine appropriate addition of CTDIs and/or DLPs

Level 2: Patient Organ Doses
- DICOM SR, Size Adjusted, Organ Doses
 - Auto-insert into Radiology Report,
 - Queriable Database of Organ Doses
Summary of CTDI

Summary of CTDIvol

- Is not patient dose
- Is dose to a reference sized phantom (reference can vary from Peds to Adult or it might be same)
- Needs to be adjusted for patient size
- Need methods to determine when to add CTDIs and when not to (especially in automated fashion)

- Is not skin dose (overestimates skin dose for perfusion scans)
- TG 111 measurements (small chamber) will do a better job when that is standardized
Appendix 1 – CTDI basics
CT – Specific definitions

- What is unique about CT?
 - Geometry and usage
 - Exposure is at multiple points around patient
 - Typically thin? (0.5 - 40 mm) beam widths
 - Some beam widths up to 160 mm nominal
 - Multiple Scans (Series of Scans)
AAPM 2011 Summit on CT Dose

TOMOGRAPHIC EXPOSURE
(multiple tube positions)
CT Dose Distributions

- \(D(z) \) = dose profile along z-axis from a single acquisition

- Measure w/film or TLDs
CT Dose Distributions

- What about Multiple Scans?

$D(z)$
CT Dose Distributions
(CTDI) – defined

- How to get area under single scan dose profile?
 - Using a 100 mm pencil ion chamber
 - one measurement of an axial scan
 - typically made in phantom

Electrometer

1° + scatter

1° beam
Coming Attractions – TG 111/200

• Basic ideas
 – CTDI underestimates dose from contiguous scans (e.g. helical) by not capturing scatter tails.
 • Some scanners have beam widths larger than 100mm now, so not even all primary is captured.
 – CTDI overestimates dose from axial scan with no table motion because scatter tails included
• Replace CTDI w/ small chamber measurement
• Measure Deq w/long phantom and long scan
 – capture all scatter tails
AAPM TG 111 CT Dose (Small Chamber)

Comprehensive Methodology for the Evaluation of Radiation Dose in X-Ray Computed Tomography

A New Measurement Paradigm Based on a Unified Theory for Axial, Helical, Fan-Beam, and Cone-Beam Scanning With or Without Longitudinal Translation of the Patient Table

Report of AAPM Task Group 111: The Future of CT Dosimetry

February 2010

DISCLAIMER: This publication is based on sources and information believed to be reliable, but the AAPM, the authors, and the editors disclaim any warranty or liability based on or relating to the contents of this publication.

The AAPM does not endorse any products, manufacturers, or suppliers. Nothing in this publication should be interpreted as implying such endorsement.
Coming Attractions – TG 111/200

- Helical scan or axial scan, however scan is performed clinically
 - Perform measurement w/table motion or no motion
- Three phantom lengths or one phantom length
 - Full characterization of Deq
 - Or a reference measurement for QA
- TG 111 report on AAPM website
- TG 200 working out phantom and protocol
Other Coming Attractions

Proposed IEC Standard (Amend 1, Ed. 3)

- Modify CTDI measurement, based on beam width (NT)
 - NT ≤ 40 mm, conventional CTDI w/single axial scan
 \[
 CTDI_{100}(N \times T) = \frac{1}{N \times T} \int_{-50mm}^{+50mm} D(z)dz
 \]
 - NT > 40 mm, first
 - conventional CTDI w/single axial scan at ref. NT (≤ 40 mm)
 - Then scale by ratio of measurements made free-in-air at desired NT and reference NT

\[
CTDI_{100}(N \times T) = \frac{1}{(N_{\text{ref}} \times T_{\text{ref}})} \times \left(\int_{-50mm}^{+50mm} D_{\text{ref}}(z)dz \right) \times \left(\frac{CTDI_{\text{free-in-air}}(N \times T)}{CTDI_{\text{free-in-air}}(N_{\text{ref}} \times T_{\text{ref}})} \right)
\]
Coming Attractions

- Proposed IEC Standard (Amend 1. Ed. 3) provides consistent offset from ideal ($CTDI_{w,\infty}$)