Uncertainties in Reference Dosimeters

Larry A. DeWerd, Ph.D., FAAPM Co-authors: Tina L. Pike, M.S., John A. Micka, B.S., and Laura J. Bartol, M.S.

Disclosure

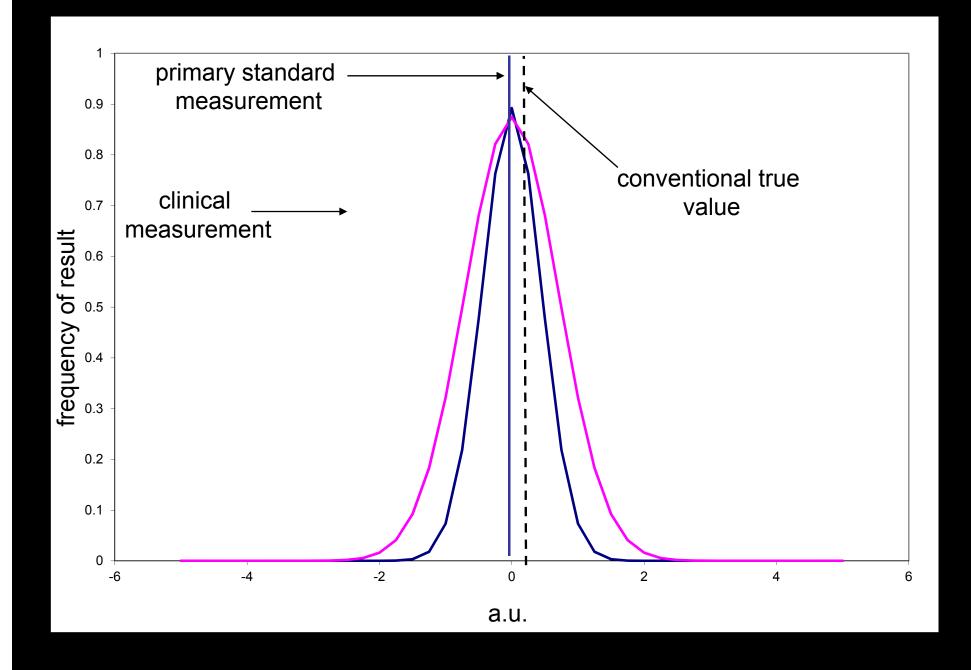
 Larry DeWerd has partial interest in Standard Imaging Inc.

Outline of Talk

- Formation of Uncertainties
- Uncertainty for External Beam Dosimetry with Reference Chambers
 - Primary standards
 - Transfer of standards to ADCL and uncertainties
 - Transfer to the clinic
- Uncertainties in Nonstandard Applications
- Conclusions

Uncertainty

- Uncertainty tables and determinations are important for the accuracy of your measurements
- Uncertainty gives an indication of where you would expect your measurements to fall whenever you measure
- Overall uncertainty is larger than precision of measurement


Accuracy and Precision

- Accuracy is how close the result is to the conventional true value or a measure of the "correctness" of the result
- Precision is a measure of how exact the result has been determined or a measure of the reproducibility of the result
- See back of summer school shirt
- An accurate and precise instrument is desired. However, a working - precise instrument is preferable since it can be calibrated

Example of Accurate Instrument

- If the correct number (God's number or the conventional true value) was 5.002 and the average given by the instrument was 5.002, it would be extremely accurate.
- However, if the reproducibility of the instrument was large (e.g., <u>+</u> 90%) it would not be very precise and you could not know that you have taken enough measurements to produce an accurate result.
- This instrument would be classified as extremely unreliable.

Uncertainties

- Today possible variation in readings are characterized by uncertainties
- The difference between the measured value (measurand) and the conventional true value is generally never zero
- There are uncertainties involved in the measurement that can be expressed

- Type A and Type B uncertainties are used
- Type A uncertainty is estimated by the standard deviation of the mean value. These are measured results
- Any valid statistical method for treating data can be used for Type A uncertainties

- Type B uncertainty is not able to be estimated by repeated measurements (standard deviations)
- Type B is based upon scientific judgment but using that which applies to the measurement – also from Manufacturer's specifications
- Generally it is based on a confidence interval

Expression of Uncertainties: Type B

- A limit (confidence interval) is generally used for Type A or B, designated by k
- For Gaussian distributions, if we are certain that the value lies between <u>+</u> L then 99% lie here and the confidence limit is designated as *k*=3. Express L in %, call it L_% The uncertainty is then u=L_%/*k* and expressed in a %. For 95%, *k*=2 and for 67% *k*=1

Expression of Uncertainties: Type B

- Also can assume some type of probability distribution, e.g. rectangular or triangular
- Rectangular: all values fall within these maximum limits, $\pm M_{\%}$ then $u=M_{\%}/\sqrt{3}$.

Example: This is used when a manufacturer gives

maximum limits for a parameter, such as the

range of the calibration extends from 4.7 to 5.3.

(u=3.5%)

Triangular: all values fall with limits of + L_%, but the values are more weighted toward the central value. All values do not have equal probability

Then the uncertainty is estimated by $u=L_{\%}/\sqrt{6}$

Example of Distributions

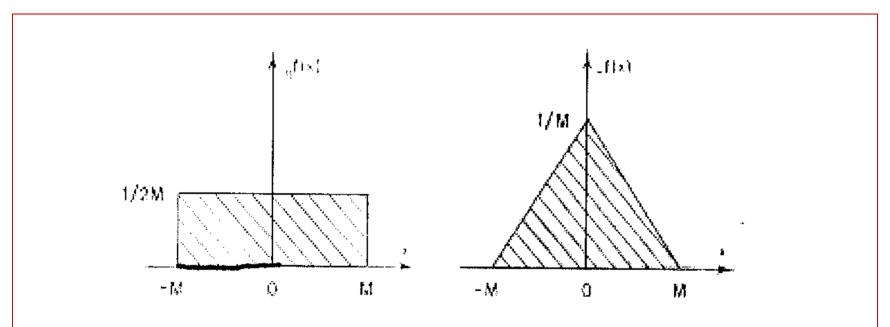


Fig..... The two simple probability density functions, rf(x) and tf(x), with a rectangular or triangular shape, may be useful models for unknown distributions.

Formation of Uncertainties

Procedure Used to Determine Uncertainty of Results

- Procedure is outlined in NIST Technical Note 1297 (1994) and more detailed information in IAEA TECDOC 1585
- Each uncertainty component is propagated sequentially throughout the measurement pathway by quadrature summation: Square root of sum of squares for k=1

Combining Uncertainties

- Uncertainties in % are combined as: $u_c = (u_A^2 + u_B^2)^{1/2}$ This can be done in tabular form.
- Calculations are done at k=1 the result is expanded (the expanded uncertainty) and reported at k=2.

$$U=ku_c$$

 If a mathematical relationship is known the propagation of uncertainties can be done by partial differentiation of the equation

Example of Use of Probability Distribution

- Manufacturer claim: The chamber to chamber tolerance for the volume for a 0.6cc chamber is ±3.3%
- Assuming a rectangular distribution, would expect at k=1: $u=3.3/\sqrt{3}=1.9\%$
- If assume a triangular distribution u=1.3%
- For a sample of over 501 chambers calibrated at the ADCL a standard deviation of ± 1.6% was observed

Use for Distributions

- Therefore the tolerances on the chambers show that the response is related to the volume of the chamber - Not surprising
- Note this is why each chamber is individually calibrated
- The precision on a calibration is about +0.2%

- Finally, the contribution of the calibration or traceability to NIST is added in
- For example, if the NIST traceable calibration has an uncertainty of 1% at k=2, then u_{NIST}=0.5%. This is added "in quadrature" to your measurement k=1 value or:

$$u_{total} = \sqrt{u_{lab}^2 + u_{NIST}^2}$$

Traceability Path From NIST to the Clinic

- Reference dosimetry is directly traceable to a primary laboratory (NIST). Criteria for reference chamber coming from WG on TG51
- NIST determines standard
- NIST transfers standard to an ADCL
- Standard is then transferred to clinic's ionization chamber and electrometer

Hierarchy of Standards

International & National Standards

Secondary Standards

ADCL

Hospital or Clinical Standards

1

Operational Standards

Primary Calibration

Secondary Calibration

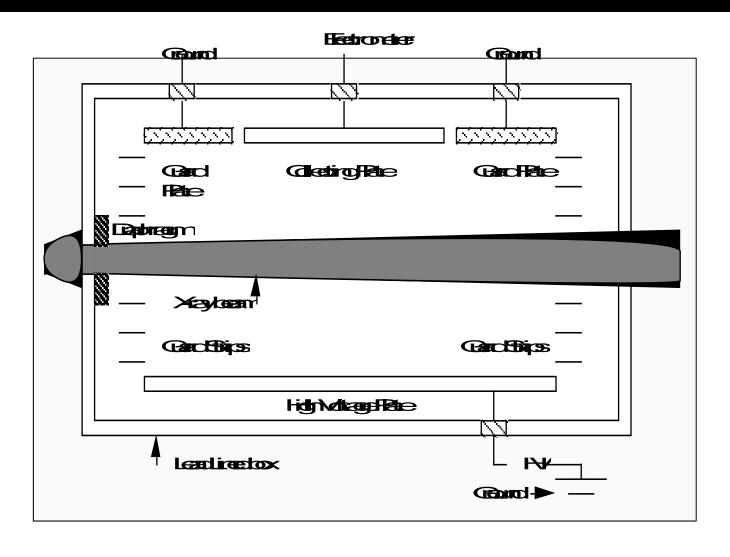
Tertiary Calibration

Components of Total Uncertainty

 $\sigma_{ ext{Total}} \Rightarrow \sigma_{ ext{NIST-ADCL Chamber Transfer}}$ $\sigma_{ ext{NIST-ADCL Electrometer Calibration}}$ $\sigma_{ ext{ADCL-Clinic Chamber Calibration}}$ $\sigma_{ ext{ADCL-Clinic Electrometer Calibration}}$

These are sequentially propagated in quadrature (the square root of the sum of the squares)

○Clinic Chamber / Elect Measurement


Areas of Uncertainty

- We will look at typical uncertainty tables for NIST to clinic through ADCL for
 - Air kerma (x-ray therapy)
 - Air kerma (cobalt)
 - Absorbed dose to water (cobalt)

Uncertainty for Primary Lab (X-ray)

- The primary labs maintain standards with a high level of accuracy
- The standard for x-ray beams <300kVp is a free air chamber
- Ionization products do not interact with the walls of the chamber – thus, free air
- The NIST uncertainty at *k*=1 is 0.31%

Uncertainty for Primary Lab: Air Kerma for Cobalt and Higher

- The standards for Cobalt air kerma are two spherical graphite-walled ionization chambers
- The NIST uncertainty at *k*=1 is 0.31%

Uncertainty for Primary Lab: Absorbed Dose to Water for Cobalt

- The standard used is a water calorimeter (at NIST developed by Domen) – other calorimeters are used
- The incident ionizing radiation raises the temperature, which is measured
- NRCC also uses a water calorimeter for linac energies
- The NIST uncertainty at 5 cm deep at *k*=1 is 0.42%

Uncertainty for Secondary Labs

- The primary labs transfer the standards to ADCLs via reference chambers
- ADCL standards are maintained with great precision
- ADCL participates in NIST-sponsored biennial proficiency tests and must fall within 0.5% of the NIST value

ADCL Uncertainties

Quantity	NIST uncertainty <i>k</i> =1	ADCL ind uncertainty <i>k</i> =1	Combined uncertainty $k=1$ ($k=2$)
Air kerma (x-ray)	0.39%	0.22%	0.45% (0.90%)
Air kerma (cobalt)	0.68%	0.22%	0.72% (1.44%)
Absorbed dose (cobalt)	0.61%	0.21%	0.64% (1.28%)

ADCL Calibration Conditions

- The absorbed dose to water is for a 10x10 cm² field at 5 cm deep at 100 cm SAD in a phantom of minimum size 30x30x30 cm³
- Applications beyond this setup increase the uncertainty

Transfer to the Clinic

- All ADCLs use the transfer technique to calibrate clinical chambers
- A standard output is determined with the ADCL reference chamber, then the clinic chamber is substituted for the ADCL reference and a comparison is made determining the calibration coefficient for the clinic chamber

Clinic Chamber Uncertainties at ADCI

- An example table is given in the chapter of the summer school book
- Environmental conditions are allowed to equilibrate and stabilize in the clinic chamber
- All other parameters are controlled to obtain the smallest uncertainty
- The following table is the uncertainty as the clinic chamber leaves the ADCL (ADCL adds another 0.22%)

Uncertainties for Clinic Chamber

Quantity	Combined Uncertainty (including NIST) k=1	Combined Uncertainty (including NIST) k=2
Air kerma (x-ray)	0.5%	1.0%
Air kerma (cobalt)	0.75%	1.5%
Absorbed dose (cobalt)	0.68%	1.4%

Uncertainty Considerations in Clinical QA

X-rays

- Position of the chamber wrt the x-ray tube can increase the uncertainty
- Differences in HVL from calibration points may affect the calibration

Linacs

- Phantom depth, machine output stability
- k_Q uncertainty must be added in this has led to the argument to calibrate at linac energies (Andreo 2011 IAEA)
- Energy differences from standard must be added in if calibrate with linac

Uncertainty in Nonstandard Conditions

- Small fields, SRS etc. require another correction factor in addition to k_Q . This adds another quantity to the uncertainty
- A conservative guess for now would be an additional
 0.5 % to 1% to the uncertainty

Conclusion

- Uncertainty determinations aid in understanding to accurately quantify the dose to the patient
- A stable (reference) chamber and electrometer capable of making high precision measurements can be calibrated to deliver the lowest uncertainty compared to the conventional true value

Acknowledgements

- Thanks to my co-authors for their help
- Thanks to my graduate students and staff who keep me intrigued
- Thanks to all those who calibrate their instruments with the UW ADCL who support our research and graduate student education