Assessment and management of uncertainties in Head & Neck IMRT

Vincent GREGOIRE, M.D., Ph.D., Hon. FRCR

Head and Neck Oncology Program, Radiation Oncology Dept. & Center for Molecular Imaging and Experimental Radiotherapy, Université Catholique de Louvain, St-Luc University Hospital, Brussels, Belgium
Evidence-based management of T1N0 glottic carcinomas: level 3

Probability of loco-regional control vs. Time from diagnosis (years)

Open Surgery
Radiotherapy
Laser

p = n.s.

Rosier, R&O, 1998
IMRT in Head and Neck Tumors
IMRT in Head and Neck Tumors

Where uncertainties could come from?

• selection and delineation of TVs and OARs
• choice of the optimal imaging modality
• patient positioning
• dose optimization
• treatment adaptation
IMRT in Head and Neck Tumors

Where uncertainties could come from?

• selection and delineation of TVs and OARs
• choice of the optimal imaging modality
• patient positioning
• dose optimization
• treatment adaptation
Heterogeneity in H&N TV delineation

Harari et al., 2004
Study design

Patients with Stage III or IV SCCHN
(stratified by stage, site, hemoglobin)

Randomization

Cisplatin, RT

Tirapazamine, cisplatin, RT
Results – Final analysis by ITT

Overall Survival By Arm

- CIS
- CIS/TPZ

2P = 0.65

Estimated percentage surviving

Years following randomisation

Hazard ratio 95% CI

CIS/TPZ > CIS
Failure-free survival by deviation status

Patients who had received at least 60 Gy of RT to PTV2
Time to LRF by treatment arm in patients **without** predicted adverse impact on TCP

Patients who had received at least 60 Gy of RT to PTV2
Factors analysed for adverse impact on TCP after secondary review: Investigator factors

Number of patients enrolled

<table>
<thead>
<tr>
<th>Enrolment bracket</th>
<th>Number of patients</th>
<th>Number with major adverse impact</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4 (26 centres)</td>
<td>57</td>
<td>17</td>
<td>29.8%</td>
</tr>
<tr>
<td>5-9 (22 centres)</td>
<td>130</td>
<td>28</td>
<td>21.5%</td>
</tr>
<tr>
<td>10-19 (22 centres)</td>
<td>279</td>
<td>33</td>
<td>11.8%</td>
</tr>
<tr>
<td>≥ 20 (11 centres)</td>
<td>352</td>
<td>19</td>
<td>5.4%</td>
</tr>
</tbody>
</table>

2P<0.0001
Selection and delineation of lymph node target volumes in head and neck conformal radiotherapy. Proposal for standardizing terminology and procedure based on the surgical experience

Vincent Grégoirea,*, Emmanuel Cocheb, Guy Cosnardb, Marc Hamoirc, Hervé Reychlerd

aDepartment of Radiation Oncology, Université Catholique de Louvain, St-Luc University Hospital, 10 Ave. Hippocrate, 1200 Brussels, Belgium
bDepartment of Radiology, Université Catholique de Louvain, St-Luc University Hospital, Brussels, Belgium
cDepartment of Otolaryngology Head and Neck Surgery, Université Catholique de Louvain, St-Luc University Hospital, Brussels, Belgium
dDepartment of Oral and Maxillo-facial Surgery, Université Catholique de Louvain, St-Luc University Hospital, Brussels, Belgium

Received 20 September 1999; received in revised form 28 March 2000; accepted 13 April 2000
IMRT in Head and Neck Tumors

CT-based delineation of lymph node levels and related CTVs in the node-negative neck: DAHANCA, EORTC, GORTEC, NCIC, RTOG consensus guidelines

Vincent Grégoirea,*,1, Peter Levendagb,1, Kian K. Angc, Jacques Bernierd, Marijel Braaksmab, Volker Budache, Cliff Chaoc, Emmanuel Cochef, Jay S. Cooperc, Guy Cosnardf, Avraham Eisbruchc, Samy El-Sayedg, Bahman Emamic, Cai Grauh, Marc Hamoiri, Nancy Leec, Philippe Maingonj, Karin Mullerb, Hervé Reychlerk

DAHANCA: http://www.dshho.suite.dk/dahanca/guidelines.html
RTOG: http://www.rtog.org/hnatlas/main.htm
Which CTV for the node positive and the post-operative neck?

Target volume delineation

Proposal for the delineation of the nodal CTV in the node-positive and the post-operative neck

Vincent Grégoirea,\textdagger, Avraham Eisbruchb, Marc Hamoirc, Peter Levendagd

aDepartment of Radiation Oncology, Head and Neck Oncology Program and Center for Molecular Imaging and Experimental Radiation Oncology, Université Catholique de Louvain, Brussels, Belgium, bDepartment of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA, cDepartment of Head and Neck Surgery and Head and Neck Oncology Program, Université Catholique de Louvain, Brussels, Belgium, dDepartment of Radiation Oncology, Rotterdam, The Netherlands
Which CTV for the neck?

Oropharyngeal Carcinoma

<table>
<thead>
<tr>
<th>Nodal stage (AJCC 1997)</th>
<th>Levels to be included in the CTV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ipsilateral neck</td>
</tr>
<tr>
<td>N0 - N1 (in level II, III or IV)</td>
<td>II-III-IV + RP(^1) for post. pharyngeal wall tumor</td>
</tr>
<tr>
<td>N2a - N2b</td>
<td>Ib, II, III, IV, V + RP</td>
</tr>
<tr>
<td>N2c</td>
<td>According to N stage on each side of the neck</td>
</tr>
<tr>
<td>N3</td>
<td>I, II, III, IV, V + RP ± adjacent structures according to clinical and radiological data</td>
</tr>
</tbody>
</table>

\(^1\)retropharyngeal nodes

Grégoire et al., 2000
CT-based delineation of lymph node levels in the neck: international consensus guidelines

Level Ia and Ib

- **Ant.** symphysis menti / platysma
- **Post.** hyoid bone / submandibular gland
- **Lat.** ant. belly of digastric m. (Ia)
 - mandible / platysma (Ib)
- **Med.** ant. belly of digastric m. (Ib)
- **Cra.** geniohyoid m./mandible (Ia)
 - mylohyoid m, submandibular gland (Ib)
- **Cau.** hyoid bone

Grégoire et al., 2003
CT-based delineation of lymph node levels in the neck: retrostyloid space

Grégoire et al., 2006
CT-based delineation of lymph node levels in the neck: subclavicular fossae
H&N IMRT practice heterogeneity among Dutch Radiation Oncologists

Rasch et al., 2007
Inter-observer variability on OAR delineation with CT-scan and MRI

Organ At Risk (OAR)

Parotid glands

Spinal cord

Average (± sem) diameter (mm)

<table>
<thead>
<tr>
<th></th>
<th>Obs1</th>
<th>Obs2</th>
<th>Obs3</th>
<th>Obs4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT-scan</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>MRI</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>

ANOVA: p=0.004

Average (± sem) volume (cc)

<table>
<thead>
<tr>
<th></th>
<th>Obs1</th>
<th>Obs2</th>
<th>Obs3</th>
<th>Obs4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT-scan</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>MRI</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>20</td>
</tr>
</tbody>
</table>

ANOVA: p<0.001

Organ At Risk (OAR) delineation with CT-scan and MRI

Geets *et al*, 2005
IMRT in Head and Neck Tumors

Where uncertainties could come from?

- selection and delineation of TVs and OARs
- choice of the optimal imaging modality
- patient positioning
- dose optimization
- treatment adaptation
Betrayal of images

This is not an apple…

R. Magritte

Target selection and delineation
Image-Guided Radiation Therapy in HNSCC

The Gross Target Volume (GTV) is the gross demonstrable extend and location of the malignant growth …
Detection of metastatic disease in the neck:
Comparison between CT, MRI and FDG-PET

- Meta-analysis: n= 1236 patients (32 studies)
- HNSCC (all sites)
- Neck dissection for all patients

Table:

<table>
<thead>
<tr>
<th>Diagnostic methods compared</th>
<th>No. of studies (references)</th>
<th>Independent estimates (95% CI)</th>
<th>Likelihood ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sensitivity</td>
<td>Specificity</td>
</tr>
<tr>
<td>CT</td>
<td>16 (20,21,23,24,26,28,31,</td>
<td>0.74 (0.61 to 0.83)</td>
<td>0.76 (0.68 to 0.83)</td>
</tr>
<tr>
<td></td>
<td>32,36,40,43–47,49,50)</td>
<td>0.82 (0.72 to 0.89)</td>
<td>0.86 (0.78 to 0.91)</td>
</tr>
<tr>
<td>18F-FDG PET</td>
<td></td>
<td>0.78 (0.54 to 0.92)</td>
<td>0.80 (0.67 to 0.88)</td>
</tr>
<tr>
<td>MRI</td>
<td>9 (20,21,24,31,40,43,</td>
<td>0.78 (0.64 to 0.87)</td>
<td>0.85 (0.79 to 0.90)</td>
</tr>
<tr>
<td></td>
<td>44,47,48,51)</td>
<td>0.78 (0.54 to 0.92)</td>
<td>0.80 (0.67 to 0.88)</td>
</tr>
<tr>
<td>CT + MRI</td>
<td>4 (19,27,34,47)</td>
<td>0.66 (0.44 to 0.82)</td>
<td>0.76 (0.53 to 0.90)</td>
</tr>
<tr>
<td>18F-FDG PET</td>
<td></td>
<td>0.73 (0.58 to 0.84)</td>
<td>0.89 (0.84 to 0.93)</td>
</tr>
<tr>
<td>USFNA</td>
<td>4 (20,21,25,39)</td>
<td>0.42 (0.01 to 0.97)</td>
<td>0.96 (0.76 to 0.99)</td>
</tr>
<tr>
<td>18F-FDG PET</td>
<td></td>
<td>0.45 (0.27 to 0.64)</td>
<td>0.88 (0.76 to 0.95)</td>
</tr>
</tbody>
</table>

* CI = confidence interval; LR+ = positive likelihood ratio; LR- = negative likelihood ratio; CT = computed tomography; 18F-FDG PET = positron emission tomography using 18F-fluorodeoxyglucose; MRI = magnetic resonance imaging; USFNA = ultrasound-guided fine-needle aspiration.
The Gross Tumor volume (GTV)

Tumor Volume in Pharyngolaryngeal Squamous Cell Carcinoma: Comparison at CT, MR Imaging, and FDG PET and Validation with Surgical Specimen¹

Jean-François Daisne, MD
Thierry Duprez, MD
Birgit Weynand, MD
Max Lonneux, MD, PhD
Marc Hamoir, MD
Hervé Reychler, MD, DDS
Vincent Grégoire, MD, PhD

Index terms:
Head and neck neoplasms, CT,
26.1211, 27.1211
Head and neck neoplasms, MR,

Daisne et al., Radiology, 233: 93-100, 2004
How far are we from the truth?

Table 3

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Tumor Site</th>
<th>T Stage</th>
<th>GTV (cm³)</th>
<th>FDG PET</th>
<th>Surgical Specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CT</td>
<td>MR Imaging</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PS</td>
<td>T4</td>
<td>47.7</td>
<td>36.3</td>
<td>19.3</td>
</tr>
<tr>
<td>2</td>
<td>GL</td>
<td>T3</td>
<td>18.0</td>
<td>9.9</td>
<td>6.0</td>
</tr>
<tr>
<td>3</td>
<td>GL</td>
<td>T3</td>
<td>41.1</td>
<td>30.2</td>
<td>9.2</td>
</tr>
<tr>
<td>4</td>
<td>RC</td>
<td>T3</td>
<td>7.1</td>
<td>10.6</td>
<td>7.3</td>
</tr>
<tr>
<td>5</td>
<td>PS</td>
<td>T2</td>
<td>4.1</td>
<td>9.1</td>
<td>2.3</td>
</tr>
<tr>
<td>6</td>
<td>SGL</td>
<td>T2</td>
<td>3.7</td>
<td>1.4</td>
<td>1.2</td>
</tr>
<tr>
<td>7</td>
<td>SubGL</td>
<td>T3</td>
<td>5.8</td>
<td>7.0</td>
<td>3.2</td>
</tr>
<tr>
<td>8</td>
<td>PS</td>
<td>T3</td>
<td>17.3</td>
<td>17.6</td>
<td>12.6</td>
</tr>
<tr>
<td>9</td>
<td>PS</td>
<td>T4</td>
<td>13.1</td>
<td>30.7</td>
<td>11.4</td>
</tr>
<tr>
<td>10</td>
<td>PS</td>
<td>T4</td>
<td>55.6</td>
<td>53.4</td>
<td>34.2</td>
</tr>
<tr>
<td>11</td>
<td>SubGL</td>
<td>T2</td>
<td>1.9</td>
<td>2.4</td>
<td>3.4</td>
</tr>
<tr>
<td>12</td>
<td>GL</td>
<td>T4</td>
<td>6.2</td>
<td>9.8</td>
<td>8.5</td>
</tr>
<tr>
<td>13</td>
<td>LAR</td>
<td>T4</td>
<td>41.0</td>
<td>58.4</td>
<td>30.2</td>
</tr>
<tr>
<td>14</td>
<td>LAR</td>
<td>T4</td>
<td>11.1</td>
<td>6.6</td>
<td>8.0</td>
</tr>
<tr>
<td>15</td>
<td>LAR</td>
<td>T4</td>
<td>14.6</td>
<td>22.0</td>
<td>10.2</td>
</tr>
<tr>
<td>16</td>
<td>LAR</td>
<td>T4</td>
<td>18.4</td>
<td>22.0</td>
<td>11.4</td>
</tr>
<tr>
<td>17</td>
<td>LAR</td>
<td>T4</td>
<td>28.1</td>
<td>32.3</td>
<td>26.6</td>
</tr>
<tr>
<td>18</td>
<td>LAR</td>
<td>T4</td>
<td>25.0</td>
<td>23.5</td>
<td>20.0</td>
</tr>
<tr>
<td>19</td>
<td>LAR</td>
<td>T4</td>
<td>40.4</td>
<td>37.3</td>
<td>28.7</td>
</tr>
</tbody>
</table>

Mean

- **All patients** (n = 19): ······ 21.4 21.4 13.4* NA
- **Patients with specimen available** (n = 9): ······ 20.8 23.8 16.3 12.6†

Note.—GL = glottic larynx, LAR = larynx without other specification, NA = not applicable, PS = pyriform sinus, RC = retro cricoid area, SGL = supraglottic larynx, SubGL = subglottic larynx.

* In the comparison with CT and MR imaging, P < .01 (for both).

† In the comparison with CT, MR imaging, and PET, P = .003, .001, and .06, respectively.
PET image segmentation: an issue?

Volume delineation based on automatic thresholding with $^{18}\text{F}-\text{FDG}$

OSEM (unsmoothed)
1.1 cm^3

OSEM (smoothed at 6 mm)
1.6 cm^3
Image-Guided Radiation Therapy in HNSCC
The 4th dimension ...

FDG-PET

0 Gy

46 Gy
PET image segmentation during RxTh

Raw image → Image processing → Image segmentation

- SBR
- BG 6mm + deconvolution

UG 4mm
Imaging resolution and biological heterogeneity

^{18}F-FDG TEP

Resolved autoradiography

Resolution 2.3 mm

Resolution 0.1 mm

N. Christian, 2010
Imaging resolution and biological Heterogeneity: a scaling issue …

Dice Similarity Index (%) vs. % of Overall Tumor Volume

- FSA II (n=5)
- SCC VII (n=5)
- FSA II + RT (n=5)

N. Christian, 2007
Effect of resolution

Mouse T₀ % vol
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.0 7.0 8.7 10.0 11.0 12.1 12.7 13.1 13.9 14.5 15.0

Human T₀
0.0 13.9 17.5 20.1 22.1 23.8 25.3 26.6 27.8 28.9 30.0

Mosaic PET

FWHM r²
1.5 mm 0.88
2.0 mm 0.84
2.5 mm 0.86
2.7 mm 0.87
3.0 mm 0.86
3.5 mm 0.84

N. Christian, 2010
Validation protocol in locally advanced HNSCC

Apport de l'imagerie fonctionnelle par Tomographie par Emission de Positrons (TEP) dans le ciblage biologique par radiothérapie de conformation (3D-CRT) et par modulation d'intensité (IMRT) de tumeurs ORL

Use of functional imaging with PET for target volume delineation in 3D-CRT/IMRT for head and neck tumors

Prof. V. Grégoire, UCL St-Luc, Brussels, Belgium
Prof. E. Lartigau, COL, Lille, France
Dr. JF Daisnes, Cliniques St-Elisabeth, Namur, Belgium
IMRT in Head and Neck Tumors

Where uncertainties could come from?

- selection and delineation of TVs and OARs
- choice of the optimal imaging modality
- patient positioning
- dose optimization
- treatment adaptation
The Cathedral of Rouen

4D-IMRT

C. Monet, 1894
Geometric 4D-IMRT

MVCT

kVCT
Geometric 4D-IMRT

Alternate week MVCTs: CTV-PTV margins

- 75 patients
- total of 1481 MVCT
- CTV-PTV: \((2\Sigma + 0.7\sigma)\)

CTV to PTV margin

Cranio-caudal direction

Medio-lateral direction

Antero-posterior direction

Vaandering, 2009
IMRT in Head and Neck Tumors

Where uncertainties could come from?

- selection and delineation of TVs and OARs
- choice of the optimal imaging modality
- patient positioning
- dose optimization
- treatment adaptation
IMRT in Head and Neck Tumors: conformal avoidance or anatomy-based IMRT

doi:10.1016/j.ijrobp.2009.09.062

PHYSICS CONTRIBUTION

EMPHASIZING CONFORMAL AVOIDANCE VERSUS TARGET DEFINITION FOR IMRT PLANNING IN HEAD-AND-NECK CANCER

PAUL M. HARARI, M.D.,* SHIYU SONG, M.D., PH.D., † AND WOLFGANG A. TOMÉ, PH.D.* †

Departments of *Human Oncology and †Medical Physics, University of Wisconsin Medical School, Madison, WI; †Department of Radiation Oncology, Medical College of Virginia, Richmond, VA

AAPM
Aug. 2011

Harari et al., 2010
IMRT in Head and Neck Tumors: conformal avoidance or anatomy-based IMRT

a) DVH comparison for GTV and CTV using TD-IMRT and CA-IMRT methods

b) DVH comparison for the Spinal Cord

c) DVH comparison for the spared parotid gland

AAPM Aug. 2011

Harari et al., 2010
IMRT in Head and Neck Tumors: D/V constraints

<table>
<thead>
<tr>
<th>PTV / PRV</th>
<th>D_{95}^a</th>
<th>D_{99}</th>
<th>D_5</th>
<th>D_2</th>
<th>Mean dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therapeutic PTV</td>
<td>$\geq 95%$ of prescribed dose</td>
<td>$\geq 90%$ of prescribed dose</td>
<td>≥ 107 of prescribed dose</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Prophylactic PTV</td>
<td>$\geq 95%$ of prescribed dose</td>
<td>$\geq 90%$ of prescribed dose</td>
<td>$?$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PRV spinal cord</td>
<td>-</td>
<td>-</td>
<td>≥ 50 Gy</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Spinal cord</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>≥ 48 Gy</td>
<td>-</td>
</tr>
<tr>
<td>Contralateral parotid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>< 20 Gy</td>
</tr>
<tr>
<td>I ipsilateral parotid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>< 25 Gy</td>
</tr>
<tr>
<td>Larynxb</td>
<td>-</td>
<td>-</td>
<td>≥ 45 Gy</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oral cavity</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>< 30 Gy</td>
</tr>
<tr>
<td>Phar constrictor m.</td>
<td></td>
<td></td>
<td>< 45 Gy</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

aDx: dose in x% of the volume

b for oropharyngeal primary only

AAPM
Aug. 2011
IMRT for Head and Neck Tumors

Oropharyngeal SCC
T2-N0-M0
SIB-IMRT: 30x2.3 Gy
30x1.85 Gy
IMRT in Head and Neck Tumors

Where uncertainties could come from?

- selection and delineation of TVs and OARs
- choice of the optimal imaging modality
- patient positioning
- dose optimization
- treatment adaptation
CT MRI (T2) FDG-PET

PRE-R/
(Week 2)
WEEK 3
(Week 4)
WEEK 5

AAPM Aug. 2011
Variation in CT Target volumes during RT-CH
(70 Gy – 3 courses chemo on w1, w4, w7)

Mean slope: -3.18% / treat day (p<0.05)
Lateral shift: 1.26mm after 25# (p<0.05)

Mean slope: -2.55% / treat day (p<0.05)
Lateral shift: 1.52mm after 25# (p<0.05)
Variation in nodal Target Volumes during RT-CH (70 Gy – 3 courses chemo on w1, w4, w7)

Mean slope: -2.15% / treat day (p<0.05)
Medial shift: 0.95mm after 25# (p<0.05)

Mean slope: -1.46% / treat day (p<0.05)
Medial shift: 0.91mm after 25# (p<0.05)

Castadot & Lee, 2010
Variation in prophylactic CTVs during RT-CH… (70 Gy – 3 courses chemo on w1, w4, w7)

Mean slope: -0.47% / treat day (p<0.05)
No shift

Mean slope: -0.41% / treat day (p<0.05)
Medial shift: 1.76mm after 25# (p<0.05)

Castadot & Lee, 2010
Variation in parotid volumes during RT-CH…
(70 Gy – 3 courses chemo on w1, w4, w7)

Homolateral parotid

Mean slope: -0.93% / treat day (p<0.05)
Medial shift: 3.21mm after 25# (p<0.05)

Heterolateral parotid

Mean slope: -1.03% / treat day (p<0.05)
No shift

Castadot & Lee, 2010
Variation in parotid and TV during RT

<table>
<thead>
<tr>
<th>Authors</th>
<th>Imaging</th>
<th>Parotid Gland</th>
<th>Target Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Δ COM</td>
<td>Δ Volume</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Δ Volume</td>
<td>Δ COM</td>
</tr>
<tr>
<td>Barker, 2004</td>
<td>EXaCT</td>
<td>3.1 mm medial</td>
<td>0.6% / day</td>
</tr>
<tr>
<td>Hansen, 2006</td>
<td>kVCT</td>
<td>-</td>
<td>15.6% - 21.5% at 36 Gy</td>
</tr>
<tr>
<td>Robar, 2007</td>
<td>kVCT</td>
<td>0.8-0.9 mm / week</td>
<td>4.9% / week</td>
</tr>
<tr>
<td>Han, 2008</td>
<td>MVCT</td>
<td>-</td>
<td>1.1% / day</td>
</tr>
<tr>
<td>Vasquez-Osorio, 2008</td>
<td>kVCT</td>
<td>3 mm medial</td>
<td>17% loss at 46 Gy</td>
</tr>
</tbody>
</table>
Adaptive Image-Guided IMRT in pharyngolaryngeal squamous cell carcinoma

<table>
<thead>
<tr>
<th>Before R/</th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
<th>Week 7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily MVCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* R/ start</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kVCT and FDG-PET Images acquisitions*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 25 patients with stage III-IV pharyngolaryngeal SCC treated by CT-RT
- MVCT images acquired daily
- kVCT and FDG-PET* images acquired before R/ and during RT after means doses of 10*, 24*, 34*, 50 and 60 Gy

Carruthers, 2010
Adaptive Image-Guided IMRT in pharyngolaryngeal squamous cell carcinoma

Carruthers, 2011
Adaptive Image-Guided IMRT in pharyngolaryngeal squamous cell carcinoma

Median Dose to PTV T (phase I)

Mean Σ median dose = 49.9 Gy

Mean Σ median dose = 48.9 Gy
Adaptive Image-Guided IMRT in pharyngo-laryngeal squamous cell carcinoma

Mean Deviation (%) from PTV Planned dose (50 Gy)

<table>
<thead>
<tr>
<th>Dose</th>
<th>PTV T</th>
<th>Ipsilateral Nodal PTV</th>
<th>Contralateral Nodal PTV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near Max (2%)</td>
<td>1.25% (±0.28*)</td>
<td>1.78% (±0.36*)</td>
<td>0.79% (±0.32*)</td>
</tr>
<tr>
<td>Median (50%)</td>
<td>0.39% (±0.28*)</td>
<td>0.15% (±0.28*)</td>
<td>0.06% (±0.22*)</td>
</tr>
<tr>
<td>95%</td>
<td>-1.52% (±0.43*)</td>
<td>-2.45% (±0.54*)</td>
<td>-3.35% (±0.38*)</td>
</tr>
<tr>
<td>Near Min (98%)</td>
<td>-3.32% (±0.60*)</td>
<td>-4.38% (±0.62*)</td>
<td>-4.96% (±0.60*)</td>
</tr>
<tr>
<td>Mean</td>
<td>0.37% (±0.43*)</td>
<td>-0.20% (±0.25*)</td>
<td>0.70% (±0.39*)</td>
</tr>
</tbody>
</table>

*Standard Error of Mean
Adaptive Image-Guided IMRT in pharyngolaryngeal squamous cell carcinoma

Median Dose to CTV T (phase I)

Mean Σ median dose = 49.4 Gy
Mean Σ median dose = 48.9 Gy
Adaptive Image-Guided IMRT in pharyngolaryngeal squamous cell carcinoma

Mean Deviation (%) from CTV Planned dose (50 Gy)

<table>
<thead>
<tr>
<th>Dose</th>
<th>CTV T</th>
<th>Ipsilateral Nodal CTV</th>
<th>Contralateral Nodal CTV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near Max (2%)</td>
<td>1.26% (±0.31*)</td>
<td>1.18% (±0.25*)</td>
<td>0.96% (±0.34*)</td>
</tr>
<tr>
<td>Median (50%)</td>
<td>0.93% (±0.25*)</td>
<td>0.51% (±0.24*)</td>
<td>0.33% (±0.21*)</td>
</tr>
<tr>
<td>95%</td>
<td>-0.19% (±0.37*)</td>
<td>-1.00% (±0.54*)</td>
<td>-0.80% (±0.26*)</td>
</tr>
<tr>
<td>Near Min (98%)</td>
<td>-1.33% (±0.69*)</td>
<td>-1.12% (±0.26*)</td>
<td>-1.95% (±0.37*)</td>
</tr>
<tr>
<td>Mean</td>
<td>0.77% (±0.24*)</td>
<td>0.37% (±0.21*)</td>
<td>0.15% (±0.20*)</td>
</tr>
</tbody>
</table>

*Standard Error of Mean
Adaptive Image-Guided IMRT in pharyngolaryngeal squamous cell carcinoma

Ipsilateral Parotid Mean Dose (phase I)

\[\Sigma \text{mean dose} = 23.66 \text{Gy} \]

\[\Sigma \text{mean dose} = 21.23 \text{Gy} \]
Adaptive Image-Guided IMRT in pharyngolaryngeal squamous cell carcinoma

Mean Deviation(%) from OAR Planned dose (50 Gy)

<table>
<thead>
<tr>
<th>Dose</th>
<th>Ipsilateral Parotid</th>
<th>Contralateral Parotid</th>
<th>Oral Cavity</th>
<th>PRV SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>16.09% (±1.79*)</td>
<td>10.55% (±2.46*)</td>
<td>4.38% (±1.15*)</td>
<td>-</td>
</tr>
<tr>
<td>Near Max (2%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.39% (±1.12*)</td>
</tr>
</tbody>
</table>

*Standard Error of Mean
Adaptive Image-Guided IMRT in pharyngo-laryngeal squamous cell carcinoma

Total Ipsilateral Parotid Shift

Latero-medial shift (mm)

Fraction#

Average/fx = 0.13mm

Σ mean movement = 4.36mm

Carruthers, 2011
Adaptive Image-Guided IMRT in pharyngolaryngeal squamous cell carcinoma

Total Ipsilateral Parotid Shrinkage

Average/fraction # = 0.56%

Σ mean shrinkage = 19.03%
Adaptive Image-Guided IMRT in pharyngolaryngeal squamous cell carcinoma

Ipsilateral Parotid Shift vs Dose (PT8)
Adaptive Image-Guided IMRT in pharyngolaryngeal squamous cell carcinoma

Contralateral Parotid Shift vs Dose (PT2)
Adaptive Image-Guided IMRT in pharyngolaryngeal squamous cell carcinoma

<table>
<thead>
<tr>
<th>Irradiated volume</th>
<th>Planned dose distribution</th>
<th>95% CI</th>
<th>Delivered dose distribution</th>
<th>95% CI</th>
<th>Adaptive dose distribution</th>
<th>95% CI</th>
<th>p-value (ANOVA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{100%}$ (cc)</td>
<td>140.4</td>
<td>[66.4 ; 214.4]</td>
<td>150.2</td>
<td>[69.3 ; 231.0]</td>
<td>112.1</td>
<td>[50.9 ; 173.3]</td>
<td><0.01</td>
</tr>
<tr>
<td>$V_{95%}$ (cc)</td>
<td>246.5</td>
<td>[137.6 ; 355.4]</td>
<td>261.4</td>
<td>[144.7 ; 378.1]</td>
<td>202.0</td>
<td>[111.5 ; 292.5]</td>
<td><0.01</td>
</tr>
<tr>
<td>$V_{90%}$ (cc)</td>
<td>274.7</td>
<td>[186.1 ; 363.3]</td>
<td>323.1</td>
<td>[189.5 ; 456.7]</td>
<td>262</td>
<td>[154.2 ; 369.7]</td>
<td>0.05</td>
</tr>
<tr>
<td>$V_{80%}$ (cc)</td>
<td>681.3</td>
<td>[533.0 ; 829.7]</td>
<td>667.5</td>
<td>[499.1 ; 835.9]</td>
<td>678.4</td>
<td>[535.9 ; 820.8]</td>
<td>0.73</td>
</tr>
<tr>
<td>$V_{70%}$ (cc)</td>
<td>1126.6</td>
<td>[921.4 ; 1331.9]</td>
<td>1142.3</td>
<td>[918.6 ; 1366.0]</td>
<td>1124.0</td>
<td>[901.4 ; 1346.7]</td>
<td>0.49</td>
</tr>
<tr>
<td>$V_{60%}$ (cc)</td>
<td>1485.4</td>
<td>[1232.8 ; 1738.0]</td>
<td>1503.4</td>
<td>[1230.7 ; 1776.1]</td>
<td>1497.9</td>
<td>[1219.0 ; 1776.8]</td>
<td>0.55</td>
</tr>
<tr>
<td>$V_{50%}$ (cc)</td>
<td>1822.5</td>
<td>[1540.5 ; 2104.4]</td>
<td>1845.2</td>
<td>[1539.1 ; 2151.2]</td>
<td>1848.3</td>
<td>[1525.1 ; 2171.5]</td>
<td>0.39</td>
</tr>
</tbody>
</table>
Adaptive Image-Guided IMRT in pharyngolaryngeal squamous cell carcinoma

Organs at Risk

<table>
<thead>
<tr>
<th>Organ</th>
<th>Planned dose distribution</th>
<th>Delivered dose distribution</th>
<th>Adaptive dose distribution</th>
<th>p-value (ANOVA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parotid glands</td>
<td>D_{mean} (Gy)</td>
<td>17.89</td>
<td>18.68</td>
<td>18.67</td>
</tr>
<tr>
<td>Submandibular glands</td>
<td>D_{mean} (Gy)</td>
<td>51.90</td>
<td>52.78</td>
<td>51.73</td>
</tr>
<tr>
<td>Oral Cavity</td>
<td>D_{mean} (Gy)</td>
<td>26.03</td>
<td>26.74</td>
<td>24.36</td>
</tr>
<tr>
<td>Spinal cord</td>
<td>$D_{2%}$ (Gy)</td>
<td>40.12</td>
<td>40.95</td>
<td>39.42</td>
</tr>
<tr>
<td>PRV spinal cord</td>
<td>$D_{2%}$ (Gy)</td>
<td>42.31</td>
<td>44.22</td>
<td>41.23</td>
</tr>
<tr>
<td>Larynx</td>
<td>$D_{5%}$ (Gy)</td>
<td>67.94</td>
<td>67.74</td>
<td>67.65</td>
</tr>
<tr>
<td>Mandible</td>
<td>$D_{2%}$ (Gy)</td>
<td>56.87</td>
<td>56.19</td>
<td>54.74</td>
</tr>
<tr>
<td>Mandible</td>
<td>$V_{50\text{Gy}}$ (%)</td>
<td>9.73</td>
<td>9.05</td>
<td>10.21</td>
</tr>
</tbody>
</table>
Adaptive Image-Guided IMRT in pharyngolaryngeal squamous cell carcinoma

Adaptive approach and ipsilateral parotid irradiation

\[R^2 = 0.65 \ (p<0.05) \]
Impact on dose distribution

Classic CT-based planning Adaptive PET-based planning

<table>
<thead>
<tr>
<th>Planning</th>
<th>V_{10}</th>
<th>V_{50}</th>
<th>V_{80}</th>
<th>V_{90}</th>
<th>V_{95}</th>
<th>V_{100}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classic CT-based</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Adaptive CT-based</td>
<td>99%</td>
<td>100%</td>
<td>100%</td>
<td>85%</td>
<td>80%</td>
<td>66%</td>
</tr>
<tr>
<td>Classic PET-based</td>
<td>99%</td>
<td>99%</td>
<td>98%</td>
<td>83%</td>
<td>82%</td>
<td>81%</td>
</tr>
<tr>
<td>Adaptive PET-based</td>
<td>99%</td>
<td>100%</td>
<td>98%</td>
<td>73%</td>
<td>67%</td>
<td>58%</td>
</tr>
</tbody>
</table>

SIB-IMRT
30x2.3 Gy
30x1.85 Gy

P<0.001

AAPM
Aug. 2011

Geets, 2007
IMRT in Head and Neck Tumors
WYSINWYG… !!!
Parotid gland sparing in IMRT for HNSCC

RTOG Subjective Salivary Gland toxicity ≥G2*

Nutting et al. JCO 2009:27 (18s);799s (LBA6006)

*Moderate or complete dryness of mouth poor or no response on stimulation

Nutting, 2009
Chemotherapy: Induction or Concomitant?

Intergroup trial R-91-11: laryngeal SCC

Laryngectomy-free survival

- Induction CT (PF)
- Concurrent (p=0.0047 vs. Induction)
- RT alone (p=0.22 vs. Induction)

Forastiere, 2001
The Human Condition.

R. Magritte, 1935
Molecular imaging dose painting by number

- Tomotherapy Hi-Art
- H&N SCC: T4N2bM0
- 60 Gy + SIB of 30 Gy
- Hypoxia (Cu-ATSM)
Molecular imaging dose painting by number

- DPBN based on FDG-PET
- Median dose of 80.9 Gy ($n=7$) and 85.9 Gy ($n=14$)
- No grade 4 acute toxicity
Radiobiological and clinical issues in IMRT for HNSCC

Comparison between SIB and 2-phase IMRT (50 Gy + 20 Gy)

<table>
<thead>
<tr>
<th>Dose level (Gy)</th>
<th>Two-phase IMRT</th>
<th>SIB IMRT</th>
<th>% difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2,183</td>
<td>2,169</td>
<td>0.6</td>
</tr>
<tr>
<td>20</td>
<td>1,975</td>
<td>1,941</td>
<td>1.8</td>
</tr>
<tr>
<td>30</td>
<td>1,557</td>
<td>1,459</td>
<td>6.7</td>
</tr>
<tr>
<td>40</td>
<td>1,096</td>
<td>1,016</td>
<td>7.9</td>
</tr>
<tr>
<td>50</td>
<td>732</td>
<td>604</td>
<td>21.2</td>
</tr>
<tr>
<td>60</td>
<td>388</td>
<td>238</td>
<td>63.0</td>
</tr>
<tr>
<td>70</td>
<td>83</td>
<td>62</td>
<td>34.0</td>
</tr>
</tbody>
</table>

Mohan et al., 2000
Work in progress

Reference image

Rigid registration

Non-rigid registration

Loeckx & Maes
ESAT, 2004
Work in progress

Checkerboard

Body contour

Dose distribution at T_1

Non-rigid checkerboard transformation

Deformed body contour

Deformed dose distribution on CT at T_2
Variation in therapeutic CTVs during RT-CH…
(70 Gy – 3 courses chemo on w1, w4, w7)

Mean slope: -1.46% / treat day (p<0.05)
Medial shift: 0.91mm after 25# (p<0.05)

Mean slope: -2.55% / treat day (p<0.05)
Lateral shift: 1.52mm after 25# (p<0.05)
Adaptive Image-Guided IMRT in pharyngo-laryngeal squamous cell carcinoma

Target volumes

<table>
<thead>
<tr>
<th></th>
<th>Planned dose distribution</th>
<th>95% CI</th>
<th>Delivered dose distribution</th>
<th>95% CI</th>
<th>Adaptive dose distribution</th>
<th>95% CI</th>
<th>p-value (ANOVA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTV<sub>ther</sub></td>
<td>D<sub>2%</sub></td>
<td>71.02</td>
<td>[70.57 ; 71.48]</td>
<td>70.63</td>
<td>[70.36 ; 70.89]</td>
<td>70.52</td>
<td>[69.87 ; 71.17]</td>
</tr>
<tr>
<td></td>
<td>D<sub>50%</sub></td>
<td>69.35</td>
<td>[69.25 ; 69.45]</td>
<td>69.39</td>
<td>[69.28 ; 69.51]</td>
<td>69.13</td>
<td>[69.00 ; 69.26]</td>
</tr>
<tr>
<td></td>
<td>D<sub>95%</sub></td>
<td>68.38</td>
<td>[68.15 ; 68.61]</td>
<td>68.42</td>
<td>[68.21 ; 68.63]</td>
<td>65.34</td>
<td>[64.00 ; 66.68]</td>
</tr>
<tr>
<td>CTV<sub>proph</sub></td>
<td>D<sub>2%</sub></td>
<td>70.55</td>
<td>[70.25 ; 70.84]</td>
<td>70.36</td>
<td>[70.14 ; 70.56]</td>
<td>70.11</td>
<td>[69.61 ; 70.60]</td>
</tr>
<tr>
<td></td>
<td>D<sub>50%</sub></td>
<td>63.48</td>
<td>[59.74 ; 67.22]</td>
<td>63.62</td>
<td>[59.86 ; 67.38]</td>
<td>62.71</td>
<td>[59.07 ; 66.35]</td>
</tr>
<tr>
<td></td>
<td>D<sub>95%</sub></td>
<td>54.88</td>
<td>[54.66 ; 55.10]</td>
<td>54.85</td>
<td>[54.55 ; 55.16]</td>
<td>55.19</td>
<td>[54.96 ; 55.41]</td>
</tr>
<tr>
<td>PTV<sub>ther</sub></td>
<td>D<sub>2%</sub></td>
<td>71.33</td>
<td>[70.95 ; 72.52]</td>
<td>70.87</td>
<td>[70.32 ; 71.43]</td>
<td>71.02</td>
<td>[70.22 ; 71.81]</td>
</tr>
<tr>
<td></td>
<td>D<sub>50%</sub></td>
<td>69.15</td>
<td>[69.05 ; 69.25]</td>
<td>69.21</td>
<td>[69.06 ; 69.36]</td>
<td>68.78</td>
<td>[68.18 ; 69.39]</td>
</tr>
<tr>
<td></td>
<td>D<sub>95%</sub></td>
<td>68.57</td>
<td>[66.10 ; 67.04]</td>
<td>66.59</td>
<td>[65.94 ; 67.23]</td>
<td>62.02</td>
<td>[60.54 ; 63.50]</td>
</tr>
<tr>
<td>PTV<sub>proph</sub></td>
<td>D<sub>2%</sub></td>
<td>70.57</td>
<td>[70.12 ; 71.01]</td>
<td>70.26</td>
<td>[70.00 ; 70.51]</td>
<td>70.06</td>
<td>[69.55 ; 70.57]</td>
</tr>
<tr>
<td></td>
<td>D<sub>50%</sub></td>
<td>60.19</td>
<td>[57.38 ; 63.01]</td>
<td>60.64</td>
<td>[57.31 ; 63.98]</td>
<td>58.70</td>
<td>[56.97 ; 60.42]</td>
</tr>
<tr>
<td></td>
<td>D<sub>95%</sub></td>
<td>54.11</td>
<td>[53.94 ; 54.27]</td>
<td>53.96</td>
<td>[53.70 ; 54.22]</td>
<td>54.31</td>
<td>[54.06 ; 54.56]</td>
</tr>
</tbody>
</table>
Adaptive Image-Guided IMRT in pharyngolaryngeal squamous cell carcinoma

Non-adaptive approach and spinal cord irradiation

\[R^2 = 0.79 \ (p < 0.05) \]
RESULTS

95% isodose to CTV T (phase I)

Σmean dose = 48.17 Gy

Σmean dose = 48.11 Gy
RESULTS

Median Dose to Ipsilateral Nodal CTV (phase I)

- Planned Dose
- Actual Dose Delivered

Σmean dose = 49.23 Gy

Σmean dose = 48.99 Gy
RESULTS

95% isodose to Ipsilateral Nodal CTV (phase I)

Σ mean dose = 48.23 Gy

Σ mean dose = 48.05 Gy

Dose(Gy)

Fraction#
RESULTS

Median Dose to Contralateral Nodal CTV (phase I)

![Graph showing median dose to contralateral nodal CTV](image)

- Planned Dose
- Actual Dose Delivered

\[\Sigma \text{mean dose} = 49.18 \text{Gy} \]

\[\Sigma \text{mean dose} = 49.48 \text{Gy} \]
RESULTS

95% isodose to Contralateral Nodal CTV (phase I)

Σmean dose = 48.70 Gy

Σmean dose = 47.93 Gy
Adaptive Image-Guided IMRT in pharyngolaryngeal squamous cell carcinoma

AAPM
Aug. 2011

Carruthers, 2011
Factors analysed for adverse impact on TCP after secondary review: Investigator fac

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of patients</th>
<th>Number with major adverse impact</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>W Europe C</td>
<td>39</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Oceania A</td>
<td>154</td>
<td>8</td>
<td>5.2%</td>
</tr>
<tr>
<td>N America A</td>
<td>101</td>
<td>6</td>
<td>5.9%</td>
</tr>
<tr>
<td>E Europe A</td>
<td>48</td>
<td>5</td>
<td>10.4%</td>
</tr>
<tr>
<td>S America A</td>
<td>54</td>
<td>6</td>
<td>11.1%</td>
</tr>
<tr>
<td>W Europe B</td>
<td>67</td>
<td>8</td>
<td>11.9%</td>
</tr>
<tr>
<td>W Europe E</td>
<td>25</td>
<td>3</td>
<td>12.0%</td>
</tr>
<tr>
<td>Oceania B</td>
<td>16</td>
<td>2</td>
<td>12.5%</td>
</tr>
<tr>
<td>W Europe A</td>
<td>127</td>
<td>17</td>
<td>13.4%</td>
</tr>
<tr>
<td>S America B</td>
<td>42</td>
<td>6</td>
<td>14.3%</td>
</tr>
<tr>
<td>E Europe B</td>
<td>28</td>
<td>4</td>
<td>14.3%</td>
</tr>
<tr>
<td>N America B</td>
<td>63</td>
<td>10</td>
<td>15.9%</td>
</tr>
<tr>
<td>W Europe D</td>
<td>30</td>
<td>5</td>
<td>16.7%</td>
</tr>
<tr>
<td>W Europe F</td>
<td>6</td>
<td>2</td>
<td>33.3%</td>
</tr>
<tr>
<td>W Europe G</td>
<td>4</td>
<td>2</td>
<td>50.0%</td>
</tr>
<tr>
<td>E Europe C</td>
<td>14</td>
<td>13</td>
<td>92.9%</td>
</tr>
</tbody>
</table>
Biological adaptive IMRT

- 10 patients with stage III-IV pharyngo-laryngeal SCC treated by CT-RT
- Images acquired before R/ and during RT after means doses of 14, 25, 35 and 45 Gy

<table>
<thead>
<tr>
<th>Before R/</th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
<th>Week 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/ start</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Images acquisitions

Anatomic imaging

Dynamic FDG-PET

Geets, 2006
Adaptive Image-Guided IMRT in pharyngolaryngeal squamous cell carcinoma

Adaptive approach and spinal cord irradiation

\[R^2 = 0.75 \ (p<0.05) \]
Adaptive Image-Guided IMRT in pharyngo-laryngeal squamous cell carcinoma

Conclusions 1

• Planned dose distribution ≠ delivered dose distribution
• Adaptive approach useful for selected patients
• GTV shrinkage as a good surrogate for plan adaptation
Inter-observer variability on target volume delineation with CT-scan and MRI

Gross Tumor volume (GTV)

<table>
<thead>
<tr>
<th></th>
<th>Oropharyngeal tumors (n= 10)</th>
<th>Hypopharyngeal/laryngeal tumors (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT-scan</td>
<td>ANOVA: p=0.47</td>
<td>ANOVA: p=0.29</td>
</tr>
<tr>
<td>MRI</td>
<td>ANOVA: p=0.59</td>
<td>ANOVA: p=0.16</td>
</tr>
</tbody>
</table>

Geets et al, 2005
Functional imaging and automatic segmentation

Volume delineation based on automatic thresholding with 18F-FDG