Encrypted login | home

Program Information

Flatness and Symmetry Threshold Detection Using Statistical Process Control

C Able

C Able*, C Hampton, A Baydush, Wake Forest School of Medicine, Winston-Salem, NC 27157

SU-E-T-207 Sunday 3:00:00 PM - 6:00:00 PM Room: Exhibit Hall

Purpose: AAPM TG-142 guidelines state that beam uniformity (flatness and symmetry) should maintain a constancy of 1% relative to baseline. The focus of this study is to determine if statistical process control (SPC) methodology using process control charts (PCC) of steering coil currents (SCC) can detect changes in beam uniformity prior to exceeding the 1% constancy criteria.
Methods: SCCs for the transverse and radial planes are adjusted such that a reproducibly useful photon or electron beam is available. Transverse and radial - positioning and angle SCC are routinely documented in the Morning Check file during daily warm-up. The 6 MV beam values for our linac were analyzed using average and range (Xbar/R) PCC. Using this data as a baseline, an experiment was performed in which each SCC was changed from its mean value (steps of 0.01 or 0.02 Ampere) while holding the other SCC constant. The effect on beam uniformity was measured using a beam scanning system. These experimental SCC values were plotted in the PCC to determine if they would exceed the pre-determined limits.
Results: The change in SCC required to exceed the 1% constancy criteria was detected by the PCC for 3 out of the 4 steering coils. The reliability of the result in the one coil not detected (transverse position coil) is questionable because the SCC slowly drifted during the experiment (0.05 A) regardless of the servo control setting.
Conclusions: X-bar/R charts of SCC can detect exceptional variation prior to exceeding the beam uniformity criteria set forth in AAPM TG-142. The high level of PCC sensitivity to change may result in an alarm when in fact minimal change in beam uniformity has occurred. Further study is needed to determine if a combination of individual SCC alarms would reduce the false positive rate for beam uniformity intervention.

Contact Email