Radiography: Parameter/Protocol Optimization New Technologies & Applications

Beth Schueler, PhD
Mayo Clinic Rochester
Disclosures

• No financial disclosures
Introduction

- Radiography has been the primary tool in radiology for over 100 years
- New image receptors and applications are making rapid changes to a field that has been stable for decades

Reference: NCRP Report No. 160
Learning Objectives

1. Examine selection of optimal exposure parameters for digital radiography
2. Learn about new radiographic detector technology
3. Review new radiographic imaging applications and techniques
Optimization of Digital Radiography

- Image quality generally improves with increased radiation dose
- First, assess the level of image quality needed for the diagnostic task
- Second, determine the acquisition parameters that provide that level of image quality at the lowest patient dose
Image Quality Criteria Example: L-spine

- Visualization of intervertebral joints, spinous process, transverse process, pedicles, sacro-iliac joints
- Sharp cortex and trabecular structures
- Contrast in soft tissue, psoas shadow
Image Quality Factors

- Spatial resolution
- Noise
- Contrast
Spatial Resolution Factors

- Geometric magnification and focal spot size
- Patient motion
- Detector resolution
 - Computed radiography (CR):
 - Blur primarily due to scattering of laser light during image plate readout
 - Flat panel detectors (FPD):
 - Indirect type (CsI, GdOS):
 - Blur primarily due to lateral light spread in scintillator layer
 - Direct type (aSe):
 - Negligible lateral spread, resolution limited by pixel pitch
FPD Spatial Resolution

Reference: Bushberg et al, The Essential Physics of Medical Imaging
Noise Factors

- Electronic noise
- Quantization noise
- Fixed-pattern noise
 - CR image plate non-uniformity
 - FPD amplifier gain variation – largely removed by gain calibration
- Quantum mottle
 - Should be dominant factor
 - Determination of appropriate quantum mottle level for the diagnostic task is an important part of optimization
Scoliosis Radiography

- Additional noise may be tolerated in follow-up radiographs acquired to assess level of spine curvature
- Allows for reduction in patient dose

Reference: Seibert, Health Physics 2008

3X lower mAs
Dose Creep

- Tendency for technologists to increase exposure parameters over time when using digital radiography
 - Under-exposure visible as increased image noise prompting radiologist complaints
 - Over-exposure may cause gray-scale clipping (burn-out) but is generally not detectable
 - Higher kVp and mAs used to avoid potential complaints
Dose Creep Solution

- **Exposure Indicator**
 - Value that indicates the radiation exposure incident on the image receptor
 - Displayed to technologist to assist with determination of under- or over-exposure

- **Problem:**
 - Digital radiography manufacturers have defined exposure indicators differently
Manufacturer-specific Indices

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Exposure Indicator</th>
<th>Formula (X = Exposure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agfa</td>
<td>IgM (Log Median of histogram)</td>
<td>2X - 0.3</td>
</tr>
<tr>
<td>Canon</td>
<td>REX (Reached Exposure Level)</td>
<td>α X(mR)</td>
</tr>
<tr>
<td>Carestream</td>
<td>EI (Exposure Index)</td>
<td>2X - 300</td>
</tr>
<tr>
<td>Fujifilm</td>
<td>S (S Value)</td>
<td>200/X(mR)</td>
</tr>
<tr>
<td>GE</td>
<td>DEI (Detector Exposure Index)</td>
<td>2.4X(mR)</td>
</tr>
<tr>
<td>Konica</td>
<td>S (Sensitivity number)</td>
<td>200/X(mR)</td>
</tr>
<tr>
<td>Philips</td>
<td>EI (Exposure Index)</td>
<td>1000/X(µGy)</td>
</tr>
<tr>
<td>Siemens</td>
<td>EXI (Exposure Index)</td>
<td>100X(µGy)</td>
</tr>
</tbody>
</table>
Manufacturer-specific Indices

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Exposure Indicator</th>
<th>Under-exposed</th>
<th>Target</th>
<th>Over-exposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canon</td>
<td>REX</td>
<td>50</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>Carestream</td>
<td>EI</td>
<td>1700</td>
<td>2000</td>
<td>2300</td>
</tr>
<tr>
<td>Fujifilm, Konica</td>
<td>S</td>
<td>400</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>Philips</td>
<td>EI</td>
<td>200</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>Siemens</td>
<td>EXI</td>
<td>500</td>
<td>1000</td>
<td>2000</td>
</tr>
</tbody>
</table>

- Scales differ
- Some values are proportional to exposure, others inversely proportional
- Confusion likely in sites with multiple manufacturer systems
Standardized Exposure Indicator

- IEC concurrently wrote standard 62494
 - Documents are similar with small differences in exposure index (EI) definition
- EI proportional to detector exposure
- User defines the target EI (EI_T)
- Deviation index (DI) = $10 \log \left(\frac{\text{EI}}{\text{EI}_T} \right)$ is displayed to technologist
Clinical Use of DI

<table>
<thead>
<tr>
<th>Deviation Index</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>> +3</td>
<td>Excessive patient radiation exposure, Repeat only if relevant anatomy is clipped or burned out, Requires immediate management follow-up</td>
</tr>
<tr>
<td>+1 to +3</td>
<td>Overexposure, Repeat only if relevant anatomy is clipped or burned out</td>
</tr>
<tr>
<td>-0.5 to +0.5</td>
<td>Target range</td>
</tr>
<tr>
<td>< -1</td>
<td>Underexposed, Consult radiologist for repeat</td>
</tr>
<tr>
<td>< -3</td>
<td>Repeat</td>
</tr>
</tbody>
</table>
Role of Medical Physicist

- Help to define target EI values for each body part, radiographic view, ped/adult
- Encourage purchase of digital radiographic equipment that incorporates use of the deviation index (DI) method
- Encourage purchase of PACS systems that display DI on all workstations
- Train technologists to understand DI values
Image Quality Factors

- Spatial resolution
- Noise
- Contrast
Contrast Factors

- Subject contrast
 - X-ray beam energy (kVp, filtration)
 - Tissue attenuation differences
 - Scatter (collimation, air gap, grid use)
- Detector contrast
- Display contrast
 - Determined by image processing
Grid Use in Digital Radiography

- Grids needed due to increased sensitivity to low energy scatter x-rays
Grid Use in Digital Radiography

- Stationary grids must be high frequency (60-80 lines/cm) to avoid aliasing artifacts
 - CR: interference between scan lines in laser scan direction and grid lines
 - FPD: interference between pixel matrix and grid lines
- Certain applications require stationary grids only
 - Portable radiography
 - Lateral projections
- Some FPD manufacturers use stationary grids in table and wall image receptors
Grid Use in Digital Radiography

- Reciprocating grids have no frequency requirement since grid lines are blurred.
- Moving grids are preferred so that lower frequency grids can be used for better scatter cleanup.
- Optimal grid parameters:
 - Table and wall bucky: 15:1, 40 lines/cm
- Grid suppression software also allows use of lower frequency stationary grids.
Image Processing

• Affects appearance of spatial resolution, noise and contrast
• Selection specific to body part, view, imaging task and personal preference
• Techniques include:
 – Grayscale processing
 – Edge enhancement
 – Contrast enhancement
Grayscale Processing

Lookup Table (LUT)
LUT

- LUT can be “burned in” at the modality workstation or stored in the DICOM header as a VOI (value of interest) LUT
- If LUT is burned in, ability to adjust contrast in PACS is limited
- With VOI LUT, user can adjust window/level to see structures in low contrast regions
Edge Enhancement

- Used to improve image detail
- Excessive edge enhancement can result in amplification of image noise or cause artifacts that could confusion diagnosis
- Skeletal imaging – generally beneficial
- Chest imaging – should be used carefully
Contrast Enhancement

• Contrast enhancement or equalization improves visualization in both dark and bright image areas

• Unsharp masking:
 – Create blurred mask image
 – Subtract from original image to create a detail image
 – Add back to original image to enhance detail contrast
Role of Medical Physicist

- Manufacturer default settings may not be optimal
- With basic knowledge of image processing techniques and potential artifacts to avoid, you can provide valuable assistance working with the application specialist and radiologist
- If adjustments in image processing are needed:
 - Anthropomorphic phantoms can be helpful to start, but actual patient imaging needed for adequate adjustments
Image Processing Adjustment

- Apply new settings to patients of different body habitus
- Make sure image appearance is also compared with previous patient comparison images and not in isolation
- Matching image appearance is particularly challenging
 - between different manufacturers
 - between FPD and CR
Learning Objectives

1. Examine selection of optimal exposure parameters for digital radiography
2. Learn about new radiographic detector technology
3. Review new radiographic imaging applications and techniques
Computed Radiography

• Historical development
 – Cassette-based phosphor CR (1980s)
 – Integrated, high-throughput cassette-less CR (1990s)
CR Recent Developments: Phosphors

- Traditional photostimulable storage phosphors are made of a powdered material in a binder
 - Robust and easy to manufacture
 - Light scatters within the material causing light spreading and reduced spatial resolution
Structured CR Phosphors

- Phosphor material deposited in a columnar needle-like structure
 - Reduced light scattering for improved spatial resolution
 - Allows for thicker layer and increased packing to improve x-ray absorption

CsBr
CR Recent Developments: Readout

- Traditional CR readers use a flying spot of laser light to stimulate the emission of trapped energy in a photostimulable phosphor plate.

Reference: Bushberg et al, *The Essential Physics of Medical Imaging*
Line-scan CR

- Laser light formed into a line and emitted light collected line-by-line for increased readout speed

Courtesy of Fujifilm
Line-scan CR

- Line-scan readout incorporated with a fixed phosphor plate to form a cassette-less image receptor
 - Fujifilm Velocity series: 9 sec readout (compare to about 1 min for a flying spot reader)
CR Technology Comparison

Structured phosphor with line-scan CR reader

Powder phosphor with spot CR reader

CR Recent Developments: Dual-Side Reading

- Light guides above and below
- Phosphor plate has clear support layer

Courtesy of Fujifilm
Dual-Side Reading for CR

Dual-side Readout

Single-side Readout

Reference: Fetterly and Schueler, Med Phys 2006
FPD Recent Developments

- Conventional CsI FPD
 - Columnar CsI crystals deposited on TFT array
 - Light detection occurs at base of crystal
 - Efficiency loss:
 - Loss of light that is emitted at the top surface
 - Flaring at base results in signal loss and blur

Courtesy of Fujifilm
FPD Recent Developments

- Irradiated Side Sampling
 - TFT array positioned on x-ray entrance side of the CsI
 - Glass replaced with alkali substrate to reduce x-ray absorption in front of the CsI
 - Improved efficiency and spatial resolution

Courtesy of Fujifilm
Irradiated Side Sampling FPD

Reference: Rivetti et al, RSNA 2011
Learning Objectives

1. Examine selection of optimal exposure parameters for digital radiography
2. Learn about new radiographic detector technology
3. Review new radiographic imaging applications and techniques
FPD Cassettes

- Allows for conventional system retrofit
- Replaces CR cassettes for free cassette views

Courtesy of Carestream
FPD Cassettes

- Tethered, wireless, screen-film cassette size, with handle

Courtesy of Canon, Carestream, GE
FPD Portable Radiography

- Pros compared to CR:
 - Improved DQE
 - lower noise and/or lower dose and shorter exposure times
 - Immediate image viewing
 - Streamlined image QA and transfer to PACS for improved efficiency
 - Prompt feedback for trauma and OR applications

Courtesy of GE
FPD Portable Radiography Issues

- Increased image receptor weight (no grid)

<table>
<thead>
<tr>
<th>Type</th>
<th>Manufacturer/Model</th>
<th>Weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR cassette</td>
<td>Fujifilm</td>
<td>4</td>
</tr>
<tr>
<td>FPD 14x17” cassette-sized</td>
<td>Carestream DRX-1, Canon CDXI-70C</td>
<td>7.5</td>
</tr>
<tr>
<td>FPD 14x17” with handle</td>
<td>Philips MobileDiagnost wDR, Siemens Mobilett Mira (Trixell)</td>
<td>10.4</td>
</tr>
<tr>
<td>FPD 16x16” with handle</td>
<td>GE Flashpad</td>
<td>9</td>
</tr>
</tbody>
</table>
FPD Portable Radiography Issues

• Detector expense
 – Sensitivity to drops or other impacts, liquids
 – Some models have drop indicators (digital or analog)
• Cable can be problematic for tethered detectors
• Be aware of backscatter artifacts
 – Reduce technique
 – Put lead behind detector
Wireless Connectivity

- Isolated private connection between detector and portable for exposure signal and image data transfer
- Standard network connection from portable to hospital network for worklist and image transmission to PACS
Wireless Connectivity Issues

- Coordinate installation with hospital IT personnel
- ORs, ICUs, Emergency Departments already have many wireless devices in place
- Proximity to other wireless devices may cause dropped signal
 - Option to connect a cable to detector is helpful
- There may be facility restrictions on the selection of radio frequency power, IP addressing, channel
- Manufacturers that provide configurable and most up-to-date wireless systems are preferred
FPD Portable Radiography Issues

• On-board display monitors
 – Ensure adequate for technologist evaluation of positioning, motion, exposure level
 • Zoom, pan, W/L adjustment needed
 – Physician viewing?
 • Adequate display brightness?
 • Can display be calibrated?
 • Easy replaced if backlight dims?
 – Video output to external display monitor

Courtesy of Siemens
Slot Scanning Systems

- Linear detector coupled with collimated slot x-ray beam
- Typical detector utilize linear CCDs
- Excellent scatter rejection, no grid needed
- Long scan times can result in patient motion during imaging
- Historical systems:
 - Philips Thoravision, Fischer Senoscan
Slot Scanning Systems

Statscan
Fastest scanning rate: 14 cm/s

Courtesy of Lodox
Slot Scanning Systems

EOS
Fastest scanning rate: 15 cm/s

Courtesy of Biospace
Dual-Energy Radiography

- Acquisition of low kVp and high kVp image in single breath-hold
 - Requires FPD with rapid image readout
- Log image subtraction to accentuate either the bone or soft-tissue components of the image
 - \[DE = \alpha + \beta(\ln I_{High} - R \times \ln I_{Low}) \]

 where \(DE \) = dual-energy image, \(I_{High} \) = high kVp image, \(I_{Low} \) = low kVp image, \(R \) determines bone or soft-tissue enhancement, \(\alpha \) and \(\beta \) scale brightness and contrast of final image
Digital Tomosynthesis

- Acquisition of a series of images while x-ray tube and detector move about patient during single breath-hold
 - Requires FPD with rapid image readout
- Similar to linear tomography except that an arbitrary number of slice planes can be rendered from one acquisition sweep
- Chest imaging is most common radiographic application
Digital Tomosynthesis

- GE VolumeRAD
 - 61 images acquired in 11 sec
 - For chest imaging, patient dose similar to a lateral chest radiograph

Courtesy of GE
Digital Tomosynthesis

References

- Samei, Range, Bisset, IQ and Dose in Radiography, RSNA/AAPM Online Physics Modules
Learning Objectives

1. Examine selection of optimal exposure parameters for digital radiography
2. Learn about new radiographic detector technology
3. Review new radiographic imaging applications and techniques