

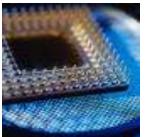
Masumi Umezawa, M.S.

Hitachi, Ltd., Hitachi Research Laboratory

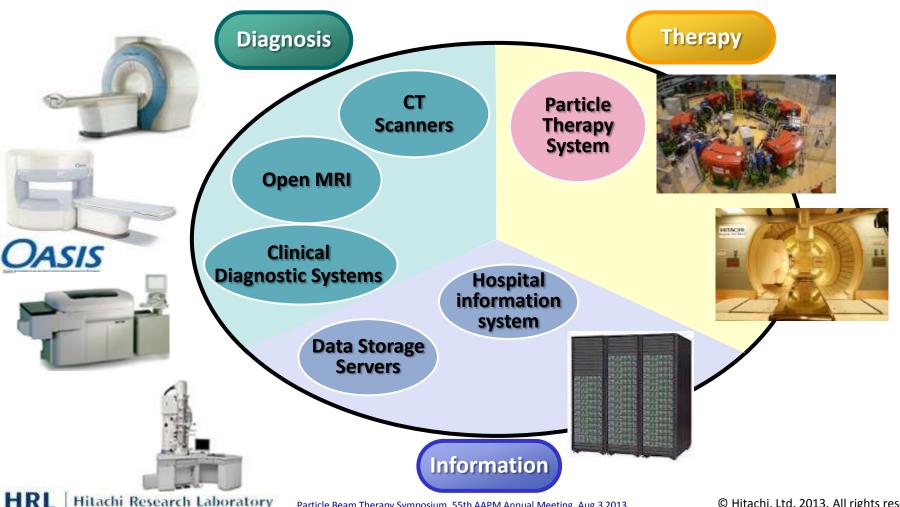
- 1. Overview of HITACHI
- 2. HITACHI Proton Beam Therapy and Spot Scanning Technologies
- 3. Patient Positioning, IGRT, and Motion Management
- 4. Recent Progress

- 1. Overview of HITACHI
- 2. HITACHI Proton Beam Therapy and Spot Scanning Technologies
- 3. Patient Positioning, IGRT, and Motion Management
- 4. Recent Progress

3 Outline of HITACHI



- **■** Founded: 1910
- Consolidated Revenue*: 9,040 Billion Yen (\$90.4 Billion, 1USD=100 JPY)
- Employees*: 326,240(*FY 2012)
- Main business activities in :
 - Power and Industrial Systems
 - **■** Electronic Devices
 - Information and telecommunication systems
 - Digital Media & Consumer Products
 - High Functional Materials and Components



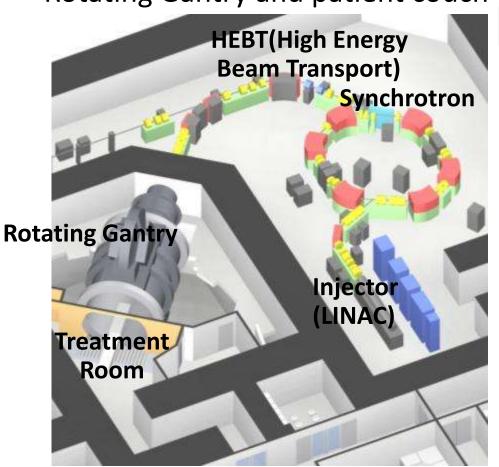
4 HITACHI Systems in Medical Society

HITACHI provides healthcare solution to the medical society through diagnosis, therapy and information system and continue to expand as a part of focus to the infrastructure business.

- 1. Overview of HITACHI
- 2. HITACHI Proton Beam Therapy and Spot Scanning Technologies
- 3. Patient Positioning, IGRT, and Motion Management
- 4. Recent Progress

6 HITACHI Particle Therapy Supply Records

	_			
2012	St. Jude Children Research Hospital, Memphis TN, U.S.A.			
(2015)	Two half rotating gantry rooms and one fixed beam room. All rooms equipped with scanning system. The c-arm type CBCT. The facility is under construction.			
2011	Mayo Clinic Rochester, MN / Phoenix, AZ, U.S.A.			
(2015)	Four half rotating gantry rooms and one fixed beam room. All rooms equipped with scanning system. The installation in Rochester started in the end of May 2013.			
2010 (2014)	Hokkaido University, Japan			
	One gantry room with scanning system. Real-Time Tumor tracking System, Robotic Couch and Gantry Mounted CBCT. The 220 MeV beam is extracted and transported to Icocenter.			
2008 (2013)	Nagoya city Quality Life 21 Jouhoku, Japan			
	Two gantry rooms with one passive and one scanning system and one Fixed room Treatment started on Feb. 25th 2013. The scanning port is under commissioning.			
2006	Heidelberg lon Therapy Center , Germany			
	HITACHI supplied the RF acceleration system.			
2002	MD Anderson Cancer Center / PROTON THERAPY CENTER, Houston, TX, U.S.A.			
(2006)	Three gantry room with two passive and one scanning system, Fixed room and Experimental room. PTC-H has treated total 4,564 patients and 980 patients with spot scanning till June 2013.			
1998	Tsukuba University Proton Medical Research Center (PMRC), Japan			
(2000)	Two gantry rooms with passive system. PMRC treats many cases of Lung, Liver with respiratory gating. PMRC have treated 2,641 patients till July 2013.			
1996 (2000)	Wakasa-bay Energy Research Center (W-MAST), Japan			
	Multi-purpose system. Acceleration of proton, Helium and Carbon and is used for physics, biology and medicine. Medical research was shutdown on November 2009.			
1995	National Cancer Center, Japan			
	HITACHI designed and constructed Gantry Room 1 and Fixed Room.			
1994	National Institute for Radiology Science (HIMAC), Japan			
	HITACHI supplied the synchrotron, power supplies and control system			



7 Overview of HITACHI Proton beam therapy system

- HITACHI PBT System
 - -Synchrotron accelerator with Injector LINAC
 - -High Energy Beam Transport lines
 - -Rotating Gantry and patient couch

Key Features

Synchrotron

with RF-driven Extraction Technology

Energy: 70 - 250MeV(for Passive)

: 70 - 220MeV(for Scanning)

HEBT

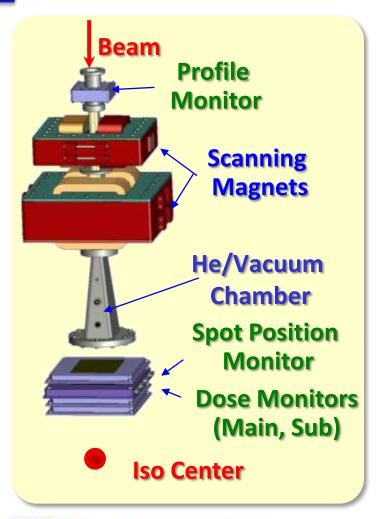
Course switching time < 45sec.

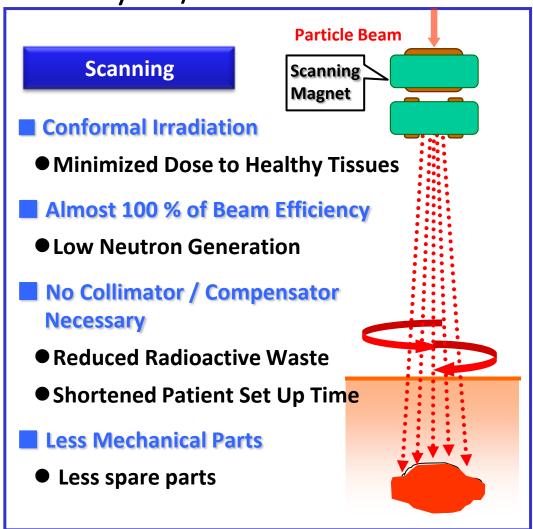
Rotating Gantry

with High precision < ±1mm

Irradiation Technique Capability

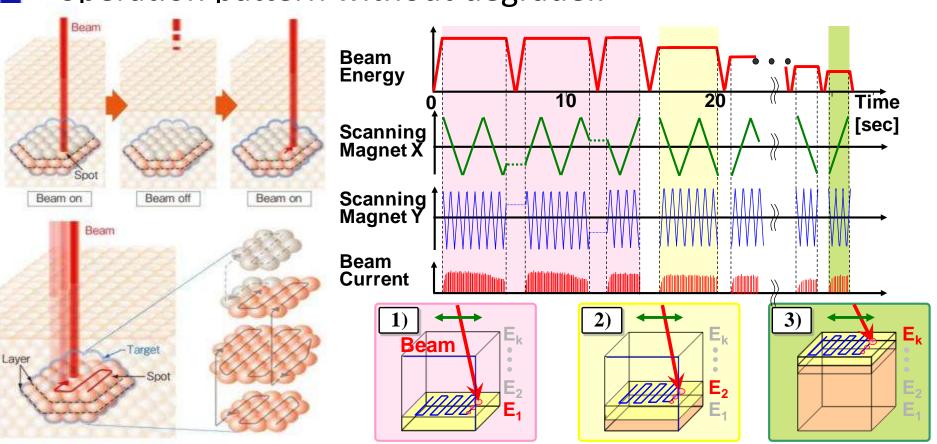
- -Passive(wobbler+RF, DS+RF, DS+RMW)+MLC
- -Spot Scanning(Discrete)


RF: Ridge Filter, DS: Double Scattering, RMW: Range Modulation Wheel

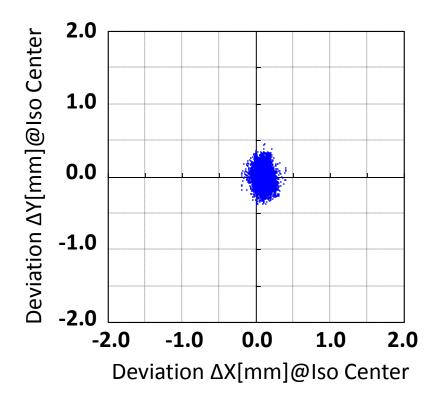


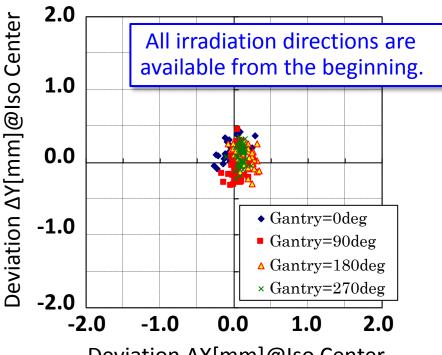
8 Spot Scanning Irradiation Nozzle

- ■HITACHI provides spot scanning dedicated nozzle.
- ■Smaller spot size is achieved by He/Vaccum chamber.



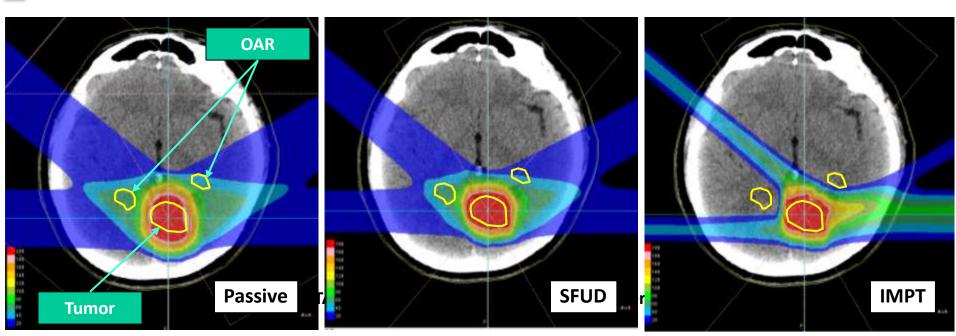
9 Discrete Spot Scanning Irradiation Scheme


- ■Beam turn on till spot dose attain to prescription.
- ■Beam switch off during spot scan.
- ■Energy change layer by layer with switching synchrotron operation pattern without degrader.


10 Beam Position Accuracy

- Synchrotron and HEBT parameters can be changed every cycle.
- ■Beam position is accurate and stable after Energy Change.

Deviation of spot position for a lateral 2D scanning (30cm x 30cm, 10,000spots)


Deviation ΔX[mm]@Iso Center

Deviation of beam center for consecutive energy scanning operation for 47 energy levels and 4 directions

11 HITACHI Scanning Irradiation Technology

- The first company that received FDA clearance for Pencil Beam Scanning in U. S. and started Spot Scanning Treatment in Commercial Based Hospital in the world.
- The first system in the world started Spot Scanning Treatment and started IMPT irradiation in the commercial based hospital.
- MDA has been treating patients for 5 years and completed about 1000 patients treatments with Spot Scanning.

SFUD: Single Field Uniform Dose, IMPT: Intensity Modulation Proton Therapy

12 HITACHI System Status in M.D. Anderson

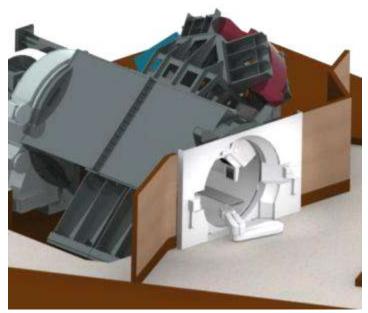
- ■100-110 patients are treated per day in 4 treatment rooms
- ■G3 Room (Scanning) is the busiest with 35 patients/day.
- ■HITACHI realizes more than 97% availability for six year avg.,(From 12/2011 to now: 99%)

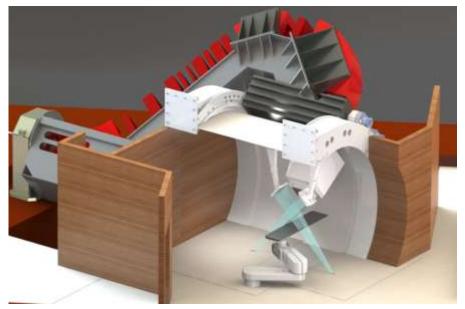
Ground breaking - May 2003 **Passive scattering** - May 2006 **Spot Scanning** - May 2008 (05/2006 - 05/2013)**Patients** ~4600 **Total patients Spot scanning** ~988 (05/2008-05/2013)

SFO Patients:

Single field integrated boost (SFIB) ~ 82 Single field uniform dose (SFUD) ~810

<u>IMPT Patients ~ 95</u> First one: 11/01/2010 **H&N 66, CNS 16, Others 13**


- 1. Overview of HITACHI
- 2. HITACHI Proton Beam Therapy and Spot Scanning Technologies
- 3. Patient Positioning, IGRT, and Motion Management
- 4. Recent Progress


14 Treatment Room and IGRT Device Layout

- Hitachi provides various type of Treatment Room Layout to meet the customer's requirement.
 - Full Rotating Gantry with CBCT Capability
 - Half Rotating Gantry with Orthogonal FPD and X-ray
 - Half Rotating Gantry with C-arm CBCT/ in room CT

Full Rotating Gantry With CBCT Capabiliy(*)

Half Rotating Gantry
With Fixed FPD and X-ray

*:developed with Hokkaido University

15 Positioning Image Analysis System

■ Positioning Image Analysis System provides the function to calculate the couch deviation (displacement from planned position) by comparing X-ray images, and supports the image guided proton therapy.

therapy.		Fire Company (to
Item	Design Specification	
	- 2D/2D matching	She be 18
Positioning Technique	- 3D/2D matching	
recinique	- 3D/3D matching	
Image Interface	DICOM RT compliance	Sice No. 258

On-line communication

with control system

Couch Interface

Motion Management with Tracking

To realize precise treatment in moving organs by developing a Gated Spot Scanning Proton Therapy with Real-Time Tumor-Tracking system

Real-time Tumor-tracking Radiotherapy

Developed by **Hokkaido University**

Integration

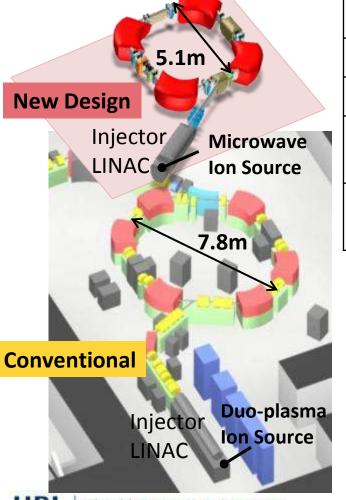
Spot scanning Proton Beam Therapy

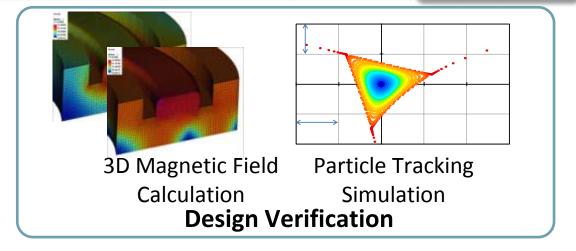
The Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)

Advanced Radiation Therapy Project

Real-time Tumor-tracking with Molecular Imaging Technique -

- 1. Overview of HITACHI
- 2. HITACHI Proton Beam Therapy and Spot Scanning Technologies
- 3. Patient Positioning, IGRT, and Motion Management
- 4. Recent Progress


18 Compact Proton Synchrotron



■ From Hokkaido System, HITACHI re-designed synchrotron to reduce cost and size with keeping required beam spec. for spot scanning

■ The design has been verified based on our experience

	Conventional	New Design				
Circumference	23m	18m				
Footprint	42.5m ²	27m ²	Cost and Size			
# of Magnets (Dipoles, Quads)	(6,10)	(4,4)	Reduction			
Ion Source Type	With Filament	Without Filament	Easy Maintenance			

19 Recent Progress in Hokkaido Project.

Beam commissioning has been started on-schedule and the basic performance of newly designed synchrotron system have been confirmed in the short period.

Proton acceleration to 220MeV in the Synchrotron on the **5th day**

220MeV Proton extracted on the **7th day**

Beam ON (04/2013)

220MeV Proton transported to the iso-center on the **15th day**

