Equipment, treatments, and quality assurance at the University of Florida Proton Therapy Institute.
• IBA Proteus 235 accelerator
 ▪ copy of system installed at MGH

• 3 gantry rooms
 ▪ all equipped with ‘universal nozzle’
 ▪ double-scattering commissioned in all gantries
 ▪ uniform-scanning commissioned in gantry 2
 ▪ pencil beam scanning currently being installed in gantry 2

• 1 eyeline
 ▪ prototype of the IBA eyeline
universal nozzle

- Fixed scatterer
- Range modulator wheel / QUAD (pbs)
- Scanning magnets
- Second scatterer
- Collimators
- Ionization chamber

Switching from DS/US mode to PBS mode: 40+ minutes
Delivery techniques

• **double scattering (98%)**
 - all targets ≤ 24 cm diameter, <23 g/cm2 range
 - all targets ≤ 14 cm diameter, <28 g/cm2 range
 - moving targets (10 Hz SOBP delivery)

• **uniform scanning (2%)**
 - deep seated targets (<34 g/cm2)
 - large targets (40cmx30cm)
 - **but:** sensitive to motion

• **pencil beam scanning (0 \rightarrow 30%?) (2014)**
 - relatively large spot
 - sensitive to motion
 - better conformity, better patching, no hardware,....
- single scattering
- range: 0.5 to 3.4 g/cm²
- max. field size: 2.5 cm diameter
- max dose rate: 30 Gy/min
- lateral penumbra (80%-20%): 1 mm
Equipment

• Imaging
 - Big-bore CT scanner
 - PET-CT scanner
 - MRI scanner

• Treatment planning and OIS
 - Eclipse (Varian) (12 stations)
 - MimVista (Mim Software)
 - MOSAIQ (Elekta)

• Machine shop
 - 2 CNC milling machines
 - 75% of hardware milled off-site (.decimal)
• Prostate
• Pediatrics
Graph courtesy Dr. Bradley

2007-2009: 115 patients
2010-2012: 370 patients
- Prostate
- Pediatrics
- Brain / CNS
- H&N
- Lung
- Lymphoma
- Bone
- Pancreas
- Breast
- Esophagus
- Eye melanoma and age-related macular degeneration

15 open protocols
patients per year

<table>
<thead>
<tr>
<th>Year</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 07</td>
<td>197</td>
</tr>
<tr>
<td>FY 08</td>
<td>565</td>
</tr>
<tr>
<td>FY 09</td>
<td>753</td>
</tr>
<tr>
<td>FY 10</td>
<td>751</td>
</tr>
<tr>
<td>FY 11</td>
<td>699</td>
</tr>
<tr>
<td>FY 12</td>
<td>782</td>
</tr>
<tr>
<td>FY 13</td>
<td>700</td>
</tr>
</tbody>
</table>
av. #treatments per day

<table>
<thead>
<tr>
<th>FY 07</th>
<th>FY 08</th>
<th>FY 09</th>
<th>FY 10</th>
<th>FY 11</th>
<th>FY 12</th>
<th>FY 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>77</td>
<td>102</td>
<td>102</td>
<td>95</td>
<td>106</td>
<td>95</td>
</tr>
</tbody>
</table>

Plus 30-40 on Linacs and Vero
• **Physics**
 - 8 faculty physicists
 - 2 QA physicists
 - 3 residents / physics assistants
 - 1 post-doc (pbs)

• **Dosimetry**
 - 13 CMD’s

• **Therapists**
 - 30
Treatment day

- 5:00 AM 'machine warm-up' by IBA
- 5:30 AM start morning QA
- 6:25 AM first patient on table
- 10PM last patient off table
- (10PM – 11PM) patient-specific / system QA
- 11PM – 5AM IBA maintenance / development

- Saturday IBA maintenance / development
- Sunday QA, commissioning, research
Calibration protocol

• machine calibration
 • IAEA TRS-398 with FC65-P Farmer chamber
 • reference field: R=15, M=10, 15x15cm²

• patient-field calibration
 • output measured (3%)....
 • measured with PPC05 parallel-plate chamber in water
 • or: with Multi-layer Ionization chamber (MLIC)
 • measured without range compensator / aperture
 • small-field measurements (<3cm)
 • special / new geometries
 • output modeled (97%)
 • Kooy model*
 • estimated accuracy ±1.5% (compared to measurement)

* Kooy et al, PMB 50 (2005)
On average ~45 new fields per week
• Establish PT correction
 ▪ Open-air MU chamber

• Measure output ref. field 1
 ▪ Range = 15.1 g/cm², Mod = 10.4 g/cm²
 ▪ PPC05 in range-compensator phantom
 ▪ Tolerance: 2% / 3%

• Record range-verifier range
 ▪ Multi-layer Faraday cup (in tx head)
 ▪ Tolerance: 2 mm / 3mm

• X-ray & laser alignment
 ▪ Position x-ray crosshair
 ▪ Tolerance: 1 mm / 2 mm

• Safety interlocks
Daily QA: uniform scanning

- In addition to DS QA in G2
- Measure output ref. field 1
 - R=15.1g/cm², M=10.4g/cm², 15x15cm²
 - PPC05 in RC phantom
 - Tolerance: 2% / 3% (4%/5%)
- Record range-verifier range
 - Distal layer
 - Multi-layer Faraday cup (in tx head)
 - Tolerance: 1 mm / 1.5 mm
- Record profile field size
 - System strip chambers
 - Tolerance: 3 mm / 4mm
Daily QA: eyeline

- measure pdd of reference field in water phantom
 - $R=2.5$ g/cm2, $M=2.0$g/cm2, $DR=20$ Gy/min
 - PPC05 in ‘baby blue’
 - range tolerance: 0.5 / 0.8 mm
 - modulation tolerance: 2 / 3 mm or 2% / 3%

- measure output of reference field in water
 - PPC05
 - tolerance: 2% / 3%

- x-ray, laser, light field, on-axis camera alignment
 - align phantom with clips to iso using x-ray
 - check alignment phantom to aperture
 - check alignment lasers, LF, camera to phantom
 - tolerances: 0.5 / 1 mm
Weekly QA

- MLIC calibration
 - Multi-layer ionization chamber (pdd and output)
 - Relative gain calibration + check abs. calibration

- PDD & Output for ref. fields 1 & 2, and third field **using MLIC**
 - Ref. field 2: R=25 g/cm², M=12 g/cm²
 - Range tolerance: 1.5 mm / 2.0 mm
 - Modulation tolerance: 2 mm / 3 mm or 2% / 3%
 - Output tolerance: 2% / 3%

- X-ray crosshair, aperture, and LF alignment
 - Check using imaging system

- Couch isocentricity
 - Align target for couch 0 deg
 - Check within 1 mm / 1.5 mm at 90 deg

- ‘fixed scatterer’ total thickness
Monthly QA

- PDD & Output for ref fields 1 & 2, and third field using water phantom
 - 1D water phantom (gantry 0)
 - PPC05 parallel plate ion chamber
 - Same tolerances as MLIC
- Lateral profile ref. fields 1&2
 - Matrixx detector
 - Tolerance flatness: 3% / 4%
 - Tolerance symmetry: 1.5% / 2%
- Alignment x-ray to proton field using double-exposure
 - Before: X-Omat V
 - Now: gafchromic XR-QA810 (0.1–20 cGy)
 - Tolerance: 1.0 mm / 1.5 mm
- Patient alignment algorithm
 - Align 3D phantom with markers after known shift
Conclusion

- UFPTI treats a lot of patients,
- a wide variety of targets,
- and with many different delivery techniques

= A lot of engineering & physics work......