

Cancer complexity (!?)

Søren M Bentzen, Ph.D., D.M.Sc.

Division of Biostatistics and Bioinformatics, UMGCC Shared Biostatistics Service University of Maryland Greenebaum Cancer Center, Baltimore, MD, USA

<u>sbentzen@som.umaryland.edu</u>

Complexity of human body

- A human body of 70 kg is comprised of:
 - ~6.7.10²⁷ atoms and ~10¹⁴ c
- Activity:
 - ~10²⁵–10²⁶ molecu'
 - ~10,000 DNA si^r
 - Blood and sm²
 - A human cell ~65% water,
 - ~1% RNA and

'ay in human body > loss <u>per cell per day</u> > per day: ~10¹⁰-10¹¹ nd consists of

No. of genes in the human body: ~20–25,000

Given Suit R&O 100: 10 (2011)

for more information on lung cancer, keep smoking.

the lung association british colombia

CAUSES OF CANCER

Genetic 5-10	5-10%	
Environmental 90-9	5%	
 Tobacco 	25-30%	
 Diet & obesity 	30-35%	
 Infections 	15-20%	
 Radiation (ionizing & non-ionizing) 	10%	
Pollution	?%	

Anand et al. *Pharm Res* <u>25:</u> 2097 (2008)

The hallmarks of cancer

Hanahan & Weinberg *Cell* <u>100:</u> 57 (2000)

Proliferation and hypoxia at the cellular level

Human HNSCC

Courtesy of AJ van der Kogel

What makes us unique?

Science (December, 2007)

Genes mirror geography

Single nucleotide polymorphisms

- Substitution of an alternate base pair at a specific nucleotide location
- Prevalence ≈1:300 nucleotides
- Common SNPs in human genome
 - 7 million SNPs with MAF > 5%
 - 4 million SNPs with 5% > MAF > 1%

RADIOGENOMICS

Linking genomics to patient-to-patient variability in tumor or normal tissue response after radiation therapy alone or combined with drugs

Large studies in progress including 1,000+ patients each

SNP's & late RT toxicity: Validation study

UK RAPPER validation study

- 92 SNPs in 46 genes previously reported to be associated with RT toxicity
- 1613 patients: 976 post-op breast, 637 radical prostate RT
- Late toxicity assessed two years after RT
- After adjusting for multiple testing, study had 99% power to detect a SNP, with Minor Allele Frequency (MAF) of 0.35, associated with an odds ratio of 2.2.

• NOT A SINGLE ONE OF THE 92 SNPs WAS SIGNIFICANT !!

Int'l Radiogenomics Consortium

- 110 members from Europe, North America, Asia
- Steering Committee
 - C West, B Rosenstein, J Alsner, SM Bentzen, J Chang-Claude, J Deasy, A Dunning, D Seminara, J Yarnold
- Meetings: Manchester (2009), New York (2010), London (2011)
- Collected clinical outcome and genetic data on 5,603 patients from 20 published and unpublished studies
- Meta-analysis on associations between SNPs in TGFB1 and normal tissue toxicity in progress (Barnett,...,Bentzen)

Fibrosis vs. genotype

OR = 0.98 (95% CI 0.85, 1.11) (99% CI 0.81, 1.16)

Incidence of G2+ fibrosis

Assuming a **25%** incidence with the common variant after adjustment for covariates... we can exclude an incidence of greater than **27.9%** for carriers of the rare allele of rs1800469 with >99% confidence

Genome wide association studies

Genome wide association studies (GWAS) take advantage of linkage disequilibrium, typically assessing 200,000–500,000 tag SNPs

Breast cancer subtypes

Russnes et al. *J Clin Invest*. <u>121:</u> 3810 (2011)

Genetic heterogeneity

Tumor heterogeneity

Burrell et al. *Nature* <u>501:</u> 338 (2013)

Genetic intra-tumor heterogeneity

Regional distribution of mutations

Phylogenetic relationship of tumor regions

Biomarker concordance primary v. met

Tumour type	Biomarker	Prognostic or predictive	Evidence of discordance
Oligodendroglioma	1p and 19q co-deletion MGMT promoter methylation	Prognostic/predictive Prognostic/predictive	Not applicable
Medullary thyroid	RET mutation	Prognostic ¹⁰²	Unknown
Breast	ER expression PR expression <i>HER</i> 2 amplification	Prognostic/predictive Prognostic Prognostic/predictive	7–25% 16–49% 3–24%
Lung	EGFR mutation EML4-ALK translocation	Prognostic/predictive Prognostic/predictive	0–38% 1–2%
Gastric	HER2 amplification	Prognostic ¹⁰⁶ /predictive	1–3%
Colorectal	KRAS mutation	Predictive	0–10%
Melanoma	BRAF mutation	Prognostic/predictive	4–25%
Gastrointestinal stromal	KIT mutation PDGFRA mutation	Predictive Predictive	Acquired mutations evolve inhibitor treatment

Brain met volume versus time

Bentzen et al. (in preparation)

CANC

Variance components

- <u>Material:</u> 247 independent brain mets in 86 evaluable patients from the WBRT alone arm of the phase III Metoxafin Gadolinium trial
- <u>Endpoint</u>: Relative tumor volume @ 4 months assessed from standardized Gd contrast MRI

57%

- Maximum likelihood variance component analysis
- Variance components:
 - between subjects
 - between lesions 43±5%

Levels of variance

Voxel-level correlation between tracers

Two canine patients with sino-nasal malignancy

Bowen et al. *R&O* <u>105:</u> 41 (2012)

The theragnostic imaging blind spot

Log # cells in mass

Clinical trials and molecular profiling

