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Today’s Actual Talk

Program says - ‘Omics Biomarker’

Reality: ‘Omics,” ‘Biomarkers’



Learning Objectives

Introduction to the USC PSOC
Developing models of cellular regulation

The complicated relationship between the
tumor proteome and the circulating proteome.

9%



Our Overarching Goal

The main theme of our PSOC is to develop a multi-scale virtual cancer
model that is able to accurately predict the growth and response to
therapy of a tumor given a set of measured inputs.
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Scales in Biology & Physics

Biologist describes across scales Physicists model across scales
Scale Biological Scale Physical model
description
Genomic Genes, transcripts, | Small scale Sub-nuclear Standard model
proteins
Organelle Protein-protein Atomic Quantum mechanics
interactions
Molecular Chemistry
Cell Pathways,
phenotypes ) .
: Mesoscopic Statistical and
signaling v physics
Organ Physiological
processes Large scale Macroscopic Classical physics
Organism Health, disease
Astronomical Cosmology
Population Epidemiology
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Resistance is a multi-scale problem

The Environment or Host

: : &
RP4

a Drug NEver h-ltS the targ_eL phySICaI Integrated Multi-scale analysis of Tumor and 3.?
blockades exist, hypoxia or other Host Response to Therapy .;0?
mechanical variation affects drug o2 (o)
effectiveness. E::IT:;;“

The Target

— Something about the target is

‘broken’ Cell State &

Dynamics

Downstream of the target

— A cell’s response circuitry is
broken or something is
compensating

We believe an integrative, multi-scale approach is necessary to develop accurate,
useable models to study therapeutic response in cancer. In particular, we note that
subtle molecular-scale perturbations (e.g. mutation in a gene) can produce dramatic,
tumor-scale (e.g. invasiveness) and organism scale (e.g. responsiveness to therapy)

affects. 49 : E
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Our Specific Biological System

Burkitt’s Lymphoma, Eu-Myc Model

Recapitulates typical genetic and pathological features of human Non-
Hodgkin’ s lymphomas

Tumors arise with relatively short latency and high penetrance
Therapy is performed in immuno-competent mice

Lymphoma cells can be cultured and transplanted into syngenic, non-
transgenic recipient mice.

The same cells can be studied in vitro and in vivo for cross-scale integration

In Vitro Treatment Response (48hrs.) In Vivo Treatment Response
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Model Structure

Therapeutic

Cell Phenotype Y
(State Xecttor Evolu Tumor Parameter
e.g. proliferating, .
quiescent, apoptotic, — tion VQCtOF N
hypoxic, necrotic and \ ) (e.g. Spatial/statistical
motile) e ~N distribution of cellular data,
Tumor tumor size, vascularization,
_ Secreted Factors Struct mutation patern)
Environment (e.g. [growth factors]) ure
(e.g. Oxygen tension, pH,
nutrients)
Tumor Model
External Stimuli RP2 & RP3 Rp4 Host
(e.g. [drug], 0s
[cytokines])
Genotype
(e.g. p53 mutation)
)
Evolu Host Response State
tion Vector
e.g. Inflammation, tumor burden
(e.9 )
Tumor .
Host Chemical Factors
Struct ) ) .
(e.g. cytokines, angiogenesis factors)

ure
Tumor Model
RP2 & RP3 9 9
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Large collection of multiscale data for model building and validation

Gene expression Bioluminescence imaging NAPPA (serum
Pre-/post-treatment Tumor dynamics ( )

Circulating auto-antibodies
CyTOF \ \ /

Intracellular signaling In vitro experiments In vivo experiments
\ RP1, RP2 RP3, RP4
- '

Proteomics

—— > Histopathology
vasculature, cell states

Cell behavior
Drug/microenvironment

Genomic sequencing

Mutations, methylation Magneto-nanosensor (serum)

Circulating cytokines

Intra-vital microscopy

disease progression
cellular trafficking

SPR experiments 9

protein binding dynamics 9 p
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Using Multi-scale Systems Approaches to Uncover
Biomarkers and Mechanisms

Topics
Background and Overview
USC PSOC

Modeling Cellular Regulation
Transcript-level
Upscaling to Protein
Connecting Protein and Phenotype

Quantitative models of the relationship between the tumor
and circulating proteomes to aid biomarker discovery

Other Random Fun.
Cell Mechanics (w/ Scott Manalis)



Research Project 1
Multi-Regulatory Scale Models of
Cellular Dynamics

RP4 &
Integrated Multi-scale analysis of Tumor and ,'c.\’
Host Response to Therapy g
&
O
~ -
r ok i
o &

Cell State &

Dynamics
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The Molecular/Cellular Team

Stanford
Garry Nolan
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Overview of Project

Develop a computational model that operates at and below
the cellular scale and across multiple time scales to
describe how the genetic background and
chemical/environmental context of a cell regulate its
behavior and engender phenotypes (e.g. response to
therapy) that ultimately impact the tumor and host.

Genome Transcriptome Proteome Phosphoproteome  |nteractome

.....
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Project Overview

Problem: Given a set of cell-intrinsic (genotype) and cell-extrinsic inputs
(environment) and some calibrants (e.g. transcript, protein levels) infer a cell’s
resulting state and state-evolution function (phenotype).

Strategy: Rigorously measure a large number of molecular and cellular
parameters in steady state, and in response to diverse perturbations. Use
those measurements with diverse data to build our model. Simulate
perturbations. Validate with additional experiments.

Deliverable: A computational model that describes cell regulatory dynamics at
multiple scales, and ‘clicks’ into the tumor-scale model.



Drug Resistance

Drug Sensitive
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 What are the processes going on inside cells
that govern how they will respond to
therapeutic (or other) perturbation?

e Can we describe those processes and possibly
predict how novel interventions will act?

 When cells are dying (or not dying) — what
does that process entail?

e Can’t we just do RNASEQ and call it good?
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From Measurements to State
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The Geneticist’s Approach

Genotype Phenotypes
Mendelian Mendelian
mutations disorders

GWAS loci \ / Compiex
? { traits

Cancer associated Tumors
genes



Hmmm...but that doesn’t work all the time...

Table 1.

Phenomena complicating the concept of the gene

Phenomenon

Description

Issue

Gene location and structure
Intronic genes

Genes with overlapping reading frames

Enhancers, silencers

Structural variation
Mobile elements

Gene rearrangements/structural variants

Copy-number variants

Epigenetics and chromosome structure
Epigenetic modifications, imprinting

Effect of chromatin structure

Genome Res. 2007 17: 669-681

A gene exists within an intron of
another (Henikoff et al. 1986)

A DNA region may code for two different
protein products in different reading
frames (Contreras et al. 1977)

Distant regulatory elements (Spilianakis et al.
2005)

Genetic element appears in new locations over
generations (McClintock 1948)

DNA rearrangement or splicing in somatic cells
results in many alternative gene
products (Early et al. 1980)

Copy number of genes/regulatory elements may
differ between individuals (lafrate et al. 2004;
Sebat et al. 2004; Tuzun et al. 2005)

Inherited information may not be DNA-sequence
based (e.g., Dobrovic et al. 1988); a gene’s
expression depends on whether it is of
paternal or maternal origin (Sager and Kitchin
1975)

Chromatin structure, which does influence gene
expression, only loosely associated with
particular DNA sequences (Paul 1972)

Two genes in the same locus

No one-to-one correspondence between DNA
and protein sequence

DNA sequences determining expression can be
widely separated from one another in
genome. Many-to-many relationship between
genes and their enhancers.

A genetic element may be not constant in its
location

Gene structure is not hereditary, or structure
may differ across individuals or cells/tissues

Genetic elements may differ in their number

Phenotype is not determined strictly by
genotype

Gene expression depends on packing of DNA.
DNA sequence is not enough to predict gene
product.

[’
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The Geneticist’s Approach

Genotype Phenotypes Phenotypes
Mendelian Mendelian Mendelian
mutations disorders disorders

; \ /Cnmp]ex /Cﬂmpiex
AP ? . traits traits

i

Cancer associated Tumors Tumors
genes
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A simple model for how cells work

Cell Phenotype is controlled by ‘Gene X’

Protein X

Transcript _ Abundance of Phenot
‘ ype
Of gene X I I

Elemente der exakten erblichkeitslehre.

Deutsche wesentlich erweiterte ausgabe in

fiinfundzwanzig vorlesungen (1909)
Wilhelm Johannsen

9%



Flow of Biological Information

Functional

DNA — RNA s Protein s potein

Translational Post translational

Control Control

Transcriptional
Control

protein processing
MRNA secondary structure

DNA Structure N protein modification
Chromatin MRNA stability protein stability/turnover
Organization URNA

protein complex formation

oF



Different Models of Cellular Regulation
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Overall Approach

1. Inferelator Magic to 2. Glue Transcript to
Derive T o | Protein & PTM 3. Glue Measurement
erive Transcriptiona rotein to State OOO

Regulatory Network _ v snthess modelled M,‘ o OOO

mRNA (R(t))

b’

Post-transcriptional
modification

v

translation rate protein degradation

Protein (P(t))
,,»""A‘**-
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Analysis “Standard Workflow”

Public data Project-
(GEO) generated data

Learn
modules{ { cMonkey }

Infer { Inferelator J

networks

Analyze, @ w

and

predict 3 @ o

Testable
Hypotheses




Starting Data

Species Normal Lymphoma Outgroup Total

Mouse 688 295 41 1024

Human 445 447 53 1025
e Goals

— ldentify state-specific functional modules

— Search for differential expression over known time course
e Applied pipeline to public microarray data

— Multi-species biclustering

— Inference on biclusters

* Follow-up analysis

e |dentification of state-specific biclusters
— Analysis of connected state-specific groups
— Overlays of project-generated time course data

o a s




Exposure of Murine Lymphoma Cells to Drugs: Experimental Design

Mafosfamide (uM)
\1, 0 0.15 0.5 1.5 5.0 15.0

GhrSOQOQQO:> DNA
(OO O00 0= m_
~QOOOOO— ™

Eu-Myc/p53-/- (resistant)
Eu-Myc/pArf-/- (sensitive)

Drug doses based on patient serum levels

(Cornelius/Lowe lab)
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Maf treatment of p53-/- vs arf-/-

. chromatin remodelling/transcriptional activation
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redicting Network Perturbations
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Overall Approach

1. Inferelator Magic to 2. Glue Transcript to
Derive T o | Protein & PTM 3. Glue Measurement
erive Transcriptiona rotein to State OOO
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Comparing Changes in Protein and Transcript Abundances

ARF-/- 24H : OH Post Mafosfamide Treatment
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No obvious correlation between transcript and protein changes
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Protein and mRNA Changes Over time

Between Ep-Myc p537/- & Arf/- Lines

=== MRNA
Topbp1l

p p == Protein
98
T, P —
o /
IE 3 /
§ 2
) 1, —— —0
a o

0 24 48
Treatment Time (hrs.)

» Involved in DSB repair.

R_ kl =¢=mRNA

|

p == Protein

o 1.5

S

e 1

w /

% os
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2 0 T 1
0 24 48

Treatment Time (hrs.)

> Part of Nolan Lab Panel

=¢=—mRNA

Pdcd4

== Protein

P53/ARF Ratio
o = N w D

24 48
Treatment Time (hrs.)

o

» Inhibits tumor promoter-induced
neoplastic transformation.

Cdk1 =¢—mRNA

== Protein

15 /.\\-
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0
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0 24 48
Treatment Time (hrs.)

» Involved in cell cycle progression.
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Multi-Scale Regulatory Model

 Conceptual graph of different model
levels

\
mMRNA synthesis modelled mRNA degradation
mMRNA (R(t))

v
Post-transcriptional
modification

Proteome 2

translation rate protein degradation

> Protein (P(t)) >

-
~~~~~
- ~

Phosphoproteome

Post-translational
modification

Interactomea E
&



Predicting Protein Levels from Transcript Levels

protein concentration

1500

3000

+

predicted protein

—6— measured protein

O

measured transcript

Topbp1

2500
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mRNA concentration
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Time Course Protein Level Prediction

protein concentration

250000

350000

300000

200000

Arpc3
+ predicted protein ++++
—8— measured protein o
©— measured transcript ++++

time (hours)
actin related protein 2/3 complex, subunit 3

160

140

120

100

80

60

mENA concentration

e (Early) Summary

— Published
degradation rates
may be low

— Constant rates
from short time
course
inadequate

— Does not account
for regulation of
degradation (e.g.,
ubiquitinylation)
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Mass Cytometry versus Fluorescence

100

Fluorescence =
« Up to 12 colors can be “routine” ¥
« 17 colors have been reported ]
» High background

10 A

a S
R T T T - = - - R
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Elemental Mass Spectrometry

* Up to 100 non-biological
elemental mass channels

 No compensation required

e Dynamic range 104

* No autofluorescence

140 145 150 155 160 165 1 ﬁﬂf
Isotopic mass (Da)




PTM-one Analysis Challenges

Single-cell vs. gmish

CyTOF Panel Function
S ” b f p27 Cell Cycle
mall number or components p21 Cell Cycle
Cyclin B1 Cell Cycle
p-Histone H3 (pS28) Cell Cycle
p-CDK1 (Y15) Cell Cycle

p-CHK1 (S345) Cell Cycle/ Checkpoint

p-Chk2 (pT68) Cell Cycle/ Checkpoint

p-pRb (S807/811) Cell Cycle/ Proliferation/ Apoptosis
p-H2AX (S139) DDR

p-ATM (pS1981) DDR

p-BRCA1 (S988) DDR

p-53BP1 (S1778) DDR

A LOT of data and slices

Completely different sample

preparatlon PAR DDR
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Spanning Tree Progression Analysis of Density-
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Spanning Tree Progression Analysis of Density-
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Spanning Tree Progression Analysis of Density-

Normalized Events (SPADE) Trees (p-H2AX)
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Spanning Tree Progression Analysis of Density-

Normalized Events (SPADE) Trees (p-H2AX)

Eu-Myc/p53-/- S-phase
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Overall Approach
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State-Relevant Sub-Network
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Cell State-Specific Expression

Apoptotic: arf-/- S-phase: p53-/-

log fold change

-0.52 0.0
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Subnetwork Expression to Cell State

 Hypothesis: each cell state has a characteristic
expression pattern over sub-network

 Use patterns to train statistical model of cell state
— Input: average bicluster expression
— Output: vector of cell state probabilities
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Classification By Bicluster Expression
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Using Multi-scale Systems Approaches to Uncover
Biomarkers and Mechanisms

Topics
Background and Overview
USC PSOC

Modeling Cellular Regulation
Transcript-level
Upscaling to Protein
Connecting Protein and Phenotype

Quantitative models of the relationship between the tumor
and circulating proteomes to aid biomarker discovery

Other Random Fun.
Cell Mechanics (w/ Scott Manalis)




The Overall Objective

Does the patient have cancer?
s that cancer aggressive/invasive?
s the cancer likely to respond to drug X?

s the cancer actually responding to drug X? 9 g

Pen e
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The Biomarker Discovery Problem (Waldo version)

Cancer Patients Healthy Controls

oF



A (slightly) More Realistic Example...

Find the Differences — part deux

Cancer Patients Healthy Controls




Easier Challenge — look in a relevant place — THEN find the

differences

Cancer Patients Healthy Controls
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Rethinking the problem - Where do biomarkers come from?

N\

\
Hypothesis: A subset of markers are derived from the tumor...?

(and also host response, which we hypothesize to be somehow related to the tumor)

Biomarkers are host-scale measurements

that tell us about tumor and cell-scale 3
phenomena 99



Key Questions of the Biomarker
Discovery Process

How does the signal

Information
Source
(message/signal)

Is there a signal to be found?

Receiver &
Decision
Processor




Hidden Assumptions

 There is a signal to be found in the tissue.

5K,
@ @ Protein Profile

Of Normal Tissue
@ L3
@ Qe

Normal

Protein Profile
Of Cancer Tissue

Capcer
SOO® ©©
QOO OO

PV Qee

e That signal makes it from the tumor into the
circulation
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Marker Discovery Problem Re-Statement

Step 1: Identify proteins that are indicative of the aberrant
state/trajectory of cancer cells (or perhaps their environment)

— Question: Are there any?

Step 2: Characterize the composition of the tumor.

— Question: what are the evolutionary forces at work?

Step 3: Identify CIRCULATING/CELL-SURFACE proteins indicative
of the presence and state/trajectory of a tumor

— Question: How do these relate to the proteins in Step 1°?

i Proteins

Proteins .. )

o ) indicative of cell

iIndicative of :
state In the

cell state i .
circulation/cell
surface

All Proteins



Data Collection
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Relationship between Tumor levels and Circulating Levels

*
*
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Explanations

 Non-Uniform processes of transfer from
tumor to circulation.

 Background Levels



Summary of tumor proteins identified and quantified in each

experiment and their cellular location

. . . Cellular location
Xenograft Average size of |Tissue|Proteins
. - Non- Not
mouse model tumors type |identified|Extracellular
extracellularjannotated
I 1 42 4 7
A431 small 750 mm3 pPlasma 03 >
tumor | 2314 170 1882 262
plasmal 87 38 42 7
A431 large 1300mm3
tumor | 2099 163 1705 231

In addition, 450 and 499 mouse proteins were identified in A431s and A431l
plasma respectively.



Circulating protein levels vs tumor burden

MA plots of A431 small and A431 large human & mouse peptides in plasma

o
—

Bigger tumor
leads to more
proteins
detected In
plasma, but not
In 1:1
assoclation

log2Heavy - logzLight
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Protein cellular locations vs.

tumor proteins observed /not observed in plasma

A.A431s tumor proteins observed in plasma B. A431s tumor proteins not observed in plasma

none-extracellular

none-extracellular

unknown

unknown

extracellular
extracellular

R [ Bl

9%



Protein abundance vs.

tumor proteins observed /not observed in plasma

Percentage of tumor proteins observed in plasma by

Percentage

spectral count

am NON-

extracellular
= Extracellular
= Not annotated

Eﬁﬁ.

=2 5% 25-50% 50-7 5% =>=75%

spectral count in quartiles
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Protein stability vs.
tumor proteins observed /not observed in plasma

instability index __ oo/ o5 5006 50-75% >75% <= 25% 25-50% 50-75% >75%

score*
A431s 37 20 12 11 542 558 566 568 7.3e-05
A431r 32 22 12 11 493 503 512 514 0.001

Stable Unstable Stable Unstable

* The higher the instability index score, the lower the protein stability is.




Association of cellular location, protein stability and abundance as well as number of tryptic

peptides of tumor proteins to their presence in the plasma using logistic regression

multivariate marginal

Coer:?me P value | Coefficient| P value

In extracellular 1.95 7.1e-13 1.91 1.2e-13

Stability 0.87 0.001 1.06 9.8e-06

Spectral 0.44 9.4e-13 0.43 3.8e-15

counts
#oftryptic | 4 5g 0.05 -0.0008 0.82

peptides

9%



Ability to Predict Circulating Tumor Derived Proteins
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1) We are working to develop approaches for modeling cell

2)

3)

behaviors and identifying the genes/proteins that are most
impacting cell-states affiliated with DDR

Cellular control systems operate at multiple scales
(transcript, protein, PTM...)

In our system there are clearly multiple stages of cellular
response — Damage Sensing, Damage Response and then
Several phases of cell death that stall differently in different
cells
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Biomechanics of Metastatic progression

4 - o
= el Invasive and Secondary
metastatic cells epithelial tumor

g - iy ) ~ : [ K
& W) — e .
. p - l - 3
o (VR
&~ ‘ 5
\ Blood vessel

Cancer cell Cancer cell
intravasation extravasation

Adapted from Kalluri and Weinberg JCI 2009

Numerous molecular and physical properties change in the process
of invasion to a distant site

What can we learn about the tumor and its progression by
measuring deformability and friction of cancer cells in an in vitro
system?

Ultimately, could such a system be used to identify and characterize

circulating tumor cells?
O



Cell Mechanics Has a Long History

Leeuwenhoek microscope, 1600’s 1920’s — magnetic microscope

Pelling and Horton, Plugers Arch- Eur J Physiol (2008) 456:3-12 ,9 "

Pen e



Methods for Probing Cell Mechanics

Micropipette Aspiration Atomic Force Microscopy Intracellular
(AFM) Nanorheology (IN)

kY

Bao and Suresh, Nature Materials, 2003

http://newton.ex.ac.uk/research/biomedical-

old/membranes/vesicle.html Panorchan et al. Methods in
Cell Biology 2007
. * Infer material
e Source of many of our e High accuracy :
. . properties from
classical models of global  Good for measuring : .
. ; Brownian motion
cellular deformation membrane properties .
: e Often limited to
* Problems: low throughput, e Mainly used to study : .
. . . viscosity
irreproducible, low accuracy local deformation
measurements

&



Microchannels for Cell Mechanics

Gabriele et al, 2010, Lab Chip

 Higher throughput than micropipettes

e But still relies on optical methods to measure
cell size/trajectory — imprecise




A new approach to measure biomechanics in high throughput

e New Suspended Microchannel Resonator approach is
rapid, precise and can measure both cell rigidity

(squishyness) and cell-surface friction (slimyness)
20007 -
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High metastatic cancer cells are squishier and in some

cases slimier

0.5-
Ve: entry velocity

: 0.4-

V;: transit velocity
< 0.3-
0.2-
0.1-
0.0-

Ve Vo Ve Vo Ve Vo

Mouse model with single transcription factor addition
Tmet vs. Tmet-Nkx2
S. Byun, S. Son, D. Amodei, N. Cermalk, J. Shaw,
Mouse model of lung cancer M. Winslow, T. Jacks, P. Mallick and S. Manalis.
Tmet vs. Thonmet Characterizing deformability and surface friction
of cancer cells, PNAS, in revision.

Human lung cancer cell lines
Mesenchymal (H1975) vs Epithelial (HCC827) 9 z%.»;
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