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Program says - ‘Omics Biomarker’ 
 
Reality:  ‘Omics,’ ‘Biomarkers’ 



Introduction to the USC PSOC 
 

Developing models of cellular regulation 
 

The complicated relationship between the 
tumor proteome and the circulating proteome. 



The main theme of our PSOC is to develop a multi-scale virtual cancer 
model that is able to accurately predict the growth and response to 
therapy of a tumor given a set of measured inputs.  
 
 

 



Scale Biological 
description 

Genomic Genes, transcripts, 
proteins 

Organelle Protein-protein 
interactions 

Cell Pathways, 
phenotypes 

Tissue Inter-cellular 
signaling 

Organ Physiological 
processes 

Organism Health, disease 

Population Epidemiology 

Scale Physical model 

Sub-nuclear Standard model 

Atomic Quantum mechanics 

Molecular Chemistry 

Mesoscopic Statistical and 
condensed matter 

physics 

Macroscopic Classical physics 

Astronomical Cosmology 

Biologist describes across scales Physicists model across scales 

Small scale 

Large scale 



The Environment or Host 
– Drug never hits the target, physical 

blockades exist, hypoxia or other 
mechanical variation affects drug 
effectiveness. 
 

The Target 
– Something about the target is 

‘broken’ 
 

Downstream of the target 
– A cell’s response circuitry is 

broken or something is 
compensating 

 
 
 

We believe an integrative, multi-scale approach is necessary to develop accurate, 
useable models to study therapeutic response in cancer.  In particular, we note that 
subtle molecular-scale perturbations (e.g. mutation in a gene) can produce dramatic, 
tumor-scale (e.g. invasiveness) and organism scale (e.g. responsiveness to therapy) 
affects. 



• Burkitt’s Lymphoma, Eµ-Myc Model 
• Recapitulates typical genetic and pathological features of human Non-

Hodgkin’s lymphomas 
• Tumors arise with relatively short latency and high penetrance 
• Therapy is performed in immuno-competent mice 
• Lymphoma cells can be cultured and transplanted into syngenic, non- 

transgenic recipient mice.  
• The same cells can be studied in vitro and in vivo for cross-scale integration 
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Cell 

Environment 
(e.g. Oxygen tension, pH, 
         nutrients) 

External Stimuli 
(e.g. [drug], 
        [cytokines]) 

Cell Phenotype 
State Vector 
(e.g. proliferating, 
quiescent, apoptotic, 
hypoxic, necrotic and 
motile) 

Evolu
tion 

Tumor 
Struct

ure 
Secreted Factors 
(e.g. [growth factors]) 

Tumor Parameter 
Vector 

(e.g. Spatial/statistical 
distribution of cellular data, 
tumor size, vascularization, 

mutation pattern) 

Host 

Host Response State 
Vector 

(e.g. Inflammation, tumor burden) 

Host Chemical Factors 
(e.g. cytokines, angiogenesis factors) 

Evolu
tion 

Tumor 
Struct

ure 
 

Rp1 

Tumor Model 
RP2 & RP3 Rp4 

Genotype 
(e.g. p53 mutation) 

Tumor Model 
RP2 & RP3 

Therapeutic 
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In vivo experiments 
RP3, RP4 

In vitro experiments 
RP1, RP2 

Gene expression 
Pre-/post-treatment 

Genomic sequencing 
Mutations, methylation Magneto-nanosensor (serum) 

Circulating cytokines 

Intra-vital microscopy 
disease progression 
cellular trafficking 

CyTOF 
Intracellular signaling 

Histopathology 
vasculature, cell states 

NAPPA (serum) 
Circulating auto-antibodies 

Bioluminescence imaging 
Tumor dynamics 

LCMS 
Proteomics 

SPR experiments 
protein binding dynamics 

Cell behavior 
Drug/microenvironment 



Topics 
Background and Overview 
 USC PSOC 
 
Modeling Cellular Regulation 
 Transcript-level 
 Upscaling to Protein 
 Connecting Protein and Phenotype 
 
Quantitative models of the relationship between the tumor 

and circulating proteomes to aid biomarker discovery 
 
Other Random Fun. 
 Cell Mechanics (w/ Scott Manalis) 
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Develop a computational model that operates at and below 
the cellular scale and across multiple time scales to 
describe how the genetic background and 
chemical/environmental context of a cell regulate its 
behavior and engender phenotypes (e.g. response to 
therapy) that ultimately impact the tumor and host.  
 Phosphoproteome Genome Transcriptome Proteome Interactome 



Problem: Given a set of cell-intrinsic (genotype) and cell-extrinsic inputs 
(environment) and some calibrants (e.g. transcript, protein levels) infer a cell’s 
resulting state and state-evolution function (phenotype). 
 
 
Strategy:  Rigorously measure a large number of molecular and cellular 
parameters in steady state, and in response to diverse perturbations.  Use 
those measurements with diverse data to build our model.  Simulate 
perturbations.  Validate with additional experiments. 
 
 
Deliverable: A computational model that describes cell regulatory dynamics at 
multiple scales, and ‘clicks’ into the tumor-scale model.  



Drug Sensitive 

Drug Resistant 



Drug Sensitive 

Drug Resistant 



• What are the processes going on inside cells 
that govern how they will respond to 
therapeutic (or other) perturbation? 

• Can we describe those processes and possibly 
predict how novel interventions will act? 

• When cells are dying (or not dying) – what 
does that process entail?   

• Can’t we just do RNASEQ and call it good? 



Genome 

Phosphoproteome 

Transcriptome 

Proteome 

Interactome 

? 

Proliferating 

Apoptosing 

Necrosing 

Migrating 

Quiescent 





Genome Res. 2007 17: 669-681 





Cell Phenotype is controlled by ‘Gene X’ 

Transcript 
Of gene X 

Abundance of 
Protein X 

Phenotype 

Elemente der exakten erblichkeitslehre. 
Deutsche wesentlich erweiterte ausgabe in 
fünfundzwanzig vorlesungen (1909) 
  Wilhelm Johannsen  



DNA RNA Protein 
Functional 
Protein 

Transcriptional 
Control 

Translational 
Control 

Post translational 
Control 

  

mRNA secondary structure 

mRNA stability 

uRNA 

 protein processing 

 protein modification 

 protein stability/turnover 

 protein complex formation 

DNA Structure 
Chromatin  
Organization 





1. Inferelator Magic to 
Derive  Transcriptional 
Regulatory Network 

2. Glue Transcript to 
Protein & PTM 

3. Glue Measurement 
to State 

Proliferating 

Dying 

Growth 
Arrested 



Public data 
(GEO) 

Project-
generated data 

cMonkey 

Inferelator 

Gaggle 

Testable 
Hypotheses 

FireGoose 

Sungear 

IGV R 

Cytoscape 

DMV 

Learn 
modules 

Infer 
networks 

Analyze, 
expand, 

and 
predict 



• Goals 
– Identify state-specific functional modules 
– Search for differential expression over known time course 

• Applied pipeline to public microarray data 
– Multi-species biclustering 
– Inference on biclusters 

• Follow-up analysis  
• Identification of state-specific biclusters 

– Analysis of connected state-specific groups 
– Overlays of project-generated time course data 

Species Normal Lymphoma Outgroup Total 

Mouse 688 295 41 1024 

Human 445 447 53 1025 



• Eµ-Myc/p53-/- (resistant) 
• Eµ-Myc/pArf-/- (sensitive) 

 
• Drug doses based on patient serum levels 
(Cornelius/Lowe lab) 

PHOSPHO 



Don’t panic 







1. Inferelator Magic to 
Derive  Transcriptional 
Regulatory Network 

2. Glue Transcript to 
Protein & PTM 

3. Glue Measurement 
to State 

Proliferating 

Dying 

Growth 
Arrested 
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Pdcd4 mRNA

Protein

 Involved in DSB repair. Inhibits tumor promoter-induced 
neoplastic transformation. 

Part of Nolan Lab Panel  Involved in cell cycle progression. 
 



• Conceptual graph of different model 
levels 

modelled 
mRNA (R(t)) 

mRNA synthesis mRNA degradation 

Protein (P(t)) 
translation rate protein degradation 

Post-translational 
modification 

Post-transcriptional 
modification 

Transcriptome 

Genome 

Phosphoproteome 

Proteome 

Interactome 





• (Early) Summary 
– Published 

degradation rates 
may be low 

– Constant rates 
from short time 
course 
inadequate 

– Does not account 
for regulation of 
degradation (e.g., 
ubiquitinylation) 



1. Inferelator Magic to 
Derive  Transcriptional 
Regulatory Network 

2. Glue Transcript to 
Protein & PTM 

3. Glue Measurement 
to State 

Proliferating 

Dying 

Growth 
Arrested 
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Fluorescence 
 
• Up to 12 colors can be “routine” 
• 17 colors have been reported 
• High background 
 

Elemental Mass Spectrometry 
 
• Up to 100 non-biological 

elemental mass channels 
• No compensation required 
• Dynamic range 104 

• No autofluorescence 
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Single-cell vs. gmish 
Small number of components  
 
A LOT of data and slices 
 
Completely different sample 
preparation 
 

CyTOF Panel Function
p27 Cell Cycle
p21 Cell Cycle
Cyclin B1 Cell Cycle
p-Histone H3 (pS28) Cell Cycle
p-CDK1 (Y15) Cell Cycle
p-CHK1 (S345) Cell Cycle/ Checkpoint
p-Chk2 (pT68) Cell Cycle/ Checkpoint
p-pRb (S807/811) Cell Cycle/ Proliferation/ Apoptosis
p-H2AX (S139) DDR
p-ATM (pS1981) DDR
p-BRCA1 (S988) DDR
p-53BP1 (S1778) DDR
PAR DDR
p-p53 (S37) DDR/ Apoptosis
p-p53 (S15) DDR/ Apoptosis
cleaved-Caspase3 Apoptosis
cleaved-PARP Apoptosis
p-Bcl-2 (S70) Survival
XIAP Survival
Mcl1 Survival
p-AMPK (T172) Metabolism
p-S6 (pS235/36) Protein Translation
p-Creb (pS133) Transcription
mCD90 Surface Marker
B220 Surface Marker
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1. Inferelator Magic to 
Derive  Transcriptional 
Regulatory Network 

2. Glue Transcript to 
Protein & PTM 

3. Glue Measurement 
to State 

Proliferating 

Dying 

Growth 
Arrested 









Apoptotic: arf-/- S-phase: p53-/- 

log fold change 

0.0 0.85 -0.52 



Apoptotic: arf-/- S-phase: p53-/- 

log fold change 

0.0 0.85 -0.52 



• Hypothesis: each cell state has a characteristic 
expression pattern over sub-network 

• Use patterns to train statistical model of cell state 
– Input: average bicluster expression 
– Output: vector of cell state probabilities 



Classifier 
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Does the patient have cancer? 
Is that cancer aggressive/invasive? 
Is the cancer likely to respond to drug X? 
Is the cancer actually responding to drug X? 

 





Cancer Patients Healthy Controls 



Cancer Patients Healthy Controls 



Cancer Patients Healthy Controls 



Hypothesis: A subset of markers are derived from the tumor…? 
(and also host response, which we hypothesize to be somehow related to the tumor) 

Biomarkers are host-scale measurements 
that tell us about tumor and cell-scale 
phenomena 



Information  
Source  

(message/signal) 

Receiver & 
Decision 

Processor 

Is there a signal to be found? 

How does the signal  
traverse the channel? 



• There is a signal to be found in the tissue. 

N
or
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Protein Profile 
Of Normal Tissue 

Protein Profile 
Of Cancer Tissue 

• That signal makes it from the tumor into the 
circulation 



Proteins 
indicative of 
cell state 

Step 1: Identify proteins that are indicative of the aberrant 
state/trajectory of cancer cells (or perhaps their environment) 

– Question: Are there any? 

Step 2: Characterize the composition of the tumor. 
– Question: what are the evolutionary forces at work? 

Step 3: Identify CIRCULATING/CELL-SURFACE proteins indicative 
of the presence and state/trajectory of a tumor 

– Question: How do these relate to the proteins in Step 1? 

Proteins 
indicative of cell  
state in the 
circulation/cell 
surface 

All Proteins 



Tumor 

IPAS Proteomics  
of Tumor and Serum 
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• Non-Uniform processes of transfer from 
tumor to circulation. 

• Background Levels 
• … 



Xenograft 
mouse model 

Average size of 
tumors 

Tissue 
type 

Proteins 
identified 

Cellular location 

Extracellular  Non-
extracellular  

Not 
annotated 

A431 small 750 mm3 plasma 103 42 54 7 
tumor 2314 170 1882 262 

A431 large 1300mm3 
plasma 87 38 42 7 
tumor 2099 163 1705 231 

In addition, 450 and 499 mouse proteins were identified in A431s and A431l 
plasma respectively.  



MA plots of A431 small and A431 large human & mouse peptides in plasma 

Bigger tumor 
leads to more 
proteins 
detected in 
plasma, but not 
in 1:1 
association 





Percentage of tumor proteins observed in plasma by 
spectral count 

Non-
extracellular 
Extracellular 
Not annotated 



Observed in plasma Not observed in plasma 
Chi-square 

test 

instability index 
score* 

<= 25% 25-50% 50-75% >75% <= 25% 25-50% 50-75% >75% 

A431s 37 20 12 11 542 558 566 568 7.3e-05 

A431r 32 22 12 11 493 503 512 514 0.001 

* The higher the instability index score, the lower the protein stability is. 

Stable Unstable Stable Unstable 



multivariate marginal 
Coefficie

nt P value Coefficient P value 

In extracellular 1.95 7.1e-13 1.91 1.2e-13 
Stability 0.87 0.001 1.06 9.8e-06 
Spectral 
counts 

0.44 9.4e-13 0.43 3.8e-15 

# of tryptic 
peptides 

-0.008 0.05 -0.0008 0.82 



Training 
Test 



1) We are working to develop approaches for modeling cell 
behaviors and identifying the genes/proteins that are most 
impacting cell-states affiliated with DDR 

2) Cellular control systems operate at multiple scales 
(transcript, protein, PTM…) 

3) In our system there are clearly multiple stages of cellular 
response – Damage Sensing, Damage Response and then 
Several phases of cell death that stall differently in different 
cells 
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Adapted from Kalluri and Weinberg JCI 2009 

Numerous molecular and physical properties change in the process 
of invasion to a distant site 

What can we learn about the tumor and its progression by 
measuring deformability and friction of cancer cells in an in vitro 
system?   

Ultimately, could such a system be used to identify and characterize 
circulating tumor cells? 



Pelling and Horton, Plugers Arch- Eur J Physiol (2008) 456:3-12 

Leeuwenhoek microscope, 1600’s 1920’s – magnetic microscope 

1990’s – AFM 



Intracellular 
Nanorheology (IN) 

Panorchan et al. Methods in 
Cell Biology 2007   

http://newton.ex.ac.uk/research/biomedical-
old/membranes/vesicle.html 

Micropipette Aspiration 

• Source of many of our 
classical models of global 
cellular deformation 

• Problems: low throughput, 
irreproducible, low accuracy 

Atomic Force Microscopy 
(AFM) 

Bao and Suresh, Nature Materials, 2003 

• High accuracy 
• Good for measuring 

membrane properties 
• Mainly used to study 

local deformation 

• Infer material 
properties from 
Brownian motion 

• Often limited to 
viscosity 
measurements 



• Higher throughput than micropipettes 
• But still relies on optical methods to measure 

cell size/trajectory – imprecise 

Gabriele et al, 2010, Lab Chip 



• New Suspended Microchannel Resonator approach is 
rapid, precise and can measure both cell rigidity 
(squishyness) and cell-surface friction (slimyness) 
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Human lung cancer cell lines 
Mesenchymal (H1975) vs Epithelial (HCC827)  

VE: entry velocity 
 
VT: transit velocity 
 

Mouse model of lung cancer 
Tmet vs. Tnonmet 

Mouse model with single transcription factor addition 
Tmet vs. Tmet-Nkx2 

S. Byun, S. Son, D. Amodei, N. Cermak, J. Shaw, 
M. Winslow, T. Jacks, P. Mallick and S. Manalis. 
Characterizing deformability and surface friction 
of cancer cells, PNAS, in revision. 

∆
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