Encrypted login | home

Program Information

A Brachytherapy Simulator with Realistic Haptic Force Feedback and Real-Time Ultrasounds Image Simulation for Training and Teaching

L Beaulieu

L Beaulieu1,2*, A Carette2 , S Comtois2 , M Lavigueur2 , P Cardou2 , D Laurendeau2 , (1) Centre Hospitalier Univ de Quebec, Quebec, QC, (2) Universite Laval, Quebec, Quebec


SU-D-BRF-6 Sunday 2:05PM - 3:00PM Room: Ballroom F

Purpose: Surgical procedures require dexterity, expertise and repetition to reach optimal patient outcomes. However, efficient training opportunities are usually limited. This work presents a simulator system with realistic haptic force-feedback and full, real-time ultrasounds image simulation.

Methods: The simulator is composed of a custom-made Linear-DELTA force-feedback robotic platform. The needle tip is mounted on a force gauge at the end effector of the robot, which responds to needle insertion by providing reaction forces. 3D geometry of the tissue is using a tetrahedral finite element mesh (FEM) mimicking tissue properties. As the needle is inserted/retracted, tissue deformation is computed using a mass-tensor non-linear visco-elastic FEM. The real-time deformation is fed to the L-DELTA to take into account the force imparted to the needle, providing feedback to the end-user when crossing tissue boundaries or needle bending. Real-time 2D US image is also generated synchronously showing anatomy, needle insertion and tissue deformation. The simulator is running on an Intel I7 6-core CPU at 3.26 MHz. 3D tissue rendering and ultrasound display are performed on a Windows 7 computer; the FEM computation and L-DELTA control are executed on a similar PC using the Neutrino real-time OS. Both machines communicate through an Ethernet link.

Results: The system runs at 500 Hz for a 8333-tetrahedron tissue mesh and a 100-node angular spring needle model. This frame rate ensures a relatively smooth displacement of the needle when pushed or retracted (±20 N in all directions at speeds of up to 2 m/s). Unlike commercially-available haptic platforms, the oblong workspace of the L-DELTA robot complies with that required for brachytherapy needle displacements of 0.1m by 0.1m by 0.25m.

Conclusion: We have demonstrated a real-life, realistic brachytherapy simulator developed for prostate implants (LDR/HDR). The platform could be adapted to other sites or training for other types of needle-based procedures.

Contact Email: