Encrypted login | home

Program Information

Evaluation of Productivity Systems for Radiation Therapy

C Ramsey

C Ramsey*, A Usynin , Thompson Cancer Survival Center, Knoxville, TN


SU-E-P-7 Sunday 3:00PM - 6:00PM Room: Exhibit Hall

Purpose: Health systems throughout the United States are under increased financial pressure to reduce operating cost. As a result, productivity models developed by third-party consultants are being used to optimize staff to treatment volumes. The purpose of this study was to critically evaluate productivity systems for radiation oncology.

Methods: Staffing efficiency was evaluated using multiple productivity models. The first model evaluated staffing levels using equal weighting of procedure codes and hours worked. A second productivity model was developed using hours worked by job class and relative value units for each procedure code. A third model was developed using the measured procedure times extracted from the electronic medical record, which tracks the wait and treatment times for each patient for each treatment fraction. A MatLab program was developed to query and analyze the daily treatment data. A model was then created to determine any theoretical gains in treatment productivity.

Results: Productivity was evaluated for six radiation therapy departments operating nine linear accelerators delivering over 40,000 treatment fractions per year. Third party productivity models that do not take into consideration the unique nature of radiation therapy can be counterproductive. For example, other outpatient departments can compress their daily schedule to decrease the worked hours. This approach was tested using the treatment schedule evaluation tool developed as part of this study. It was determined that the maximum possible savings for treatment schedule compression was $32,000 per year per linac. All annual cost savings would be lost if only two patients per year choose to be treated elsewhere because of limited or restricted appointment times.

Conclusion: The use of productivity models in radiation therapy can easily result in a loss of treatment revenue that is greater than any potential cost savings in reduced hours worked by staff.

Contact Email: