Encrypted login | home

Program Information

Output Constancy: Reducing Measurement Variations in a Large Practice Group

no image available
K Hedrick

K Hedrick*, T Fitzgerald , R Miller , Northwest Medical Physics Center, Lynnwood, WA


SU-E-T-257 Sunday 3:00PM - 6:00PM Room: Exhibit Hall

Purpose: To standardize output constancy check procedures in a large medical physics practice group covering multiple sites, in order to identify and reduce small systematic errors caused by differences in equipment and the procedures of multiple physicists.

Methods: A standardized machine output constancy check for both photons and electrons was instituted within the practice group in 2010. After conducting annual TG-51 measurements in water and adjusting the linac to deliver 1.00 cGy/MU at Dmax, an acrylic phantom (comparable at all sites) and PTW farmer ion chamber are used to obtain monthly output constancy reference readings. From the collected charge reading, measurements of air pressure and temperature, and chamber Ndw and Pelec, a value we call the Kacrylic factor is determined, relating the chamber reading in acrylic to the dose in water with standard set-up conditions. This procedure easily allows for multiple equipment combinations to be used at any site. The Kacrylic factors and output results from all sites and machines are logged monthly in a central database and used to monitor trends in calibration and output.

Results: The practice group consists of 19 sites, currently with 34 Varian and 8 Elekta linacs (24 Varian and 5 Elekta linacs in 2010). Over the past three years, the standard deviation of Kacrylic factors measured on all machines decreased by 20% for photons and high energy electrons as systematic errors were found and reduced. Low energy electrons showed very little change in the distribution of Kacrylic values. Small errors in linac beam data were found by investigating outlier Kacrylic values.

Conclusion: While the use of acrylic phantoms introduces an additional source of error through small differences in depth and effective depth, the new standardized procedure eliminates potential sources of error from using many different phantoms and results in more consistent output constancy measurements.

Contact Email: