Encrypted login | home

Program Information

Analysis of Variations in Clinical Doppler Ultrasound Peak Velocity Measurements

Y Zhang

Y Zhang*, S Stekel , D Tradup , N Hangiandreou , Mayo Clinic, Rochester, MN


TU-A-9A-2 Tuesday 7:30AM - 9:30AM Room: 9A

Purpose: Doppler ultrasound (US) peak velocity (Vmax) measurements show considerable variations due to intrinsic spectral broadening with different scanning techniques, machines and manufacturers. We developed a semi-automated Vmax estimation method and used this method to investigate the performance of a US system for clinical Doppler Vmax measurement.

Methods: Semi-automated Vmax is defined as the velocity at which the computed mean spectral profile falls to within 1 background standard deviation of the background mean. GE LOGIQ E9 system with 9L and ML6-15 probes were studied with steady flow (5.3 - 12.5 ml/s) in a Gammex OPTIMIZER 1425A phantom. All Doppler spectra were acquired by 1 operator at the distal end of 5 mm angular tube using a modified clinical carotid artery protocol. Repeatability and variation of Vmax to scanning parameters and probes were analyzed and reported as percentage, i.e. (max-min)/mean.

Results: Vmax estimation had good repeatability (3.1% over 6 days for 9L, and 3.6% for ML6-15). For 9L probe, varying gain, compression, scale, SV depth and length, and frequency had minimal impact on Vmax (all variations less than 4.0%). Beam steering had slightly higher influence (largest variations across flow rates were 4.9% for 9L and 6.9% for ML6-15). For both probes, Doppler angle had the greatest effect on Vmax. Percentage increase of Vmax was largely independent of actual flow rates. For Doppler angle varied from 30 to 60°, Vmax increased 24% for 9L, and 20% for ML6-15. Vmax measured by ML6-15 were lower than that by 9L at each Doppler angle with differences less than 5%.

Conclusion: The proposed Vmax estimation method is shown to be a useful tool to evaluate clinical Doppler US system performance. For the tested system and probes, Doppler angle had largest impact in measured Vmax.

Contact Email: