Clinical Targets and Treatment Planning II
SABR for Lung Cancer
Clinical Targets: Lung

William O’Meara, M.D., M.P.H.
Radiation Oncology Associates
Lahey Clinic
Lowell General Hospital
Outline of Presentation

• Clinical background

• Target delineation

• Thoracic anatomy OARs relevant to lung SABR
 – Lung
 – Proximal bronchial tree
 – Esophagus
 – Spinal cord
 – Brachial plexus
 – Ribs and chest wall
 – Heart
 – Pericardium
 – Great vessels
Learning Objectives

- Appreciate various acceptable & unacceptable ways for target delineation.
- Recognize the need for consistency in OAR delineation that will result in more accurate toxicity measurements.
- Recognize that target delineation and OAR delineation/constraints are currently in an evolving state that will change as more data from recently closed protocols becomes available.
Survival in Lung Cancer

SABR Results:
• Local Control at 3 yrs: 85-98%
• Overall Survival at 3 years in medically inoperable: 55-60%
• Overall Survival at 3 years in medically operable: 75%

National Lung Screening Trial (NLST)
NEJM 6/2011

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening
The National Lung Screening Trial Research Team

- > 50,000 patients
- Identified lung cancer at an earlier stage
- 20% lung cancer specific mortality benefit
- 7% overall mortality benefit

10/2011
NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®)
Lung Cancer Screening
Version 1.2012
NCCN.org

1/2012
Rescue Lung Rescue Life
at Lahey Clinic

12/2013
U.S. Preventive Services Task Force Recommendation Statement
Number of patients with early stage lung cancer presenting for definitive thoracic SABR will be increasing.

- > 50,000 patients
- Identified lung cancer at earlier stage
- 20% lung cancer specific mortality benefit
- 7% overall mortality benefit
Simulation

• Immobilization:
 – Stereotactic body frame
 – Abdominal compression
 – Immobilization Bag (Vac-Lok)
 +/- wingboard
 • Full body
 • Thoracic

• CT scanning:
 – Free breathing
 – Breath-hold
 – 4DCT
 • ITV
 • Gated

• MD must participate
• Immobilization must address comfort and envelop patient on 3 sides
• Motion assessment and management
Target Delineation

- **GTV**
 - Free-breathing
 - Average

- **CTV**
 - RTOG currently assumes GTV=CTV

- **ITV**
 - #1 MIP
 - #2 Check/modify on all individual phases (e.g. movie mode)

- **PTV**
 - Expand ITV by 5mm if 4DCT
 - 3mm too small

ICRU-62:

GTV->CTV->ITV->PTV
MIP alone may miss
<table>
<thead>
<tr>
<th>Organ</th>
<th>Volume affected</th>
<th>Radiation type</th>
<th>Simultaneous or sequential</th>
<th>Dose CI (%)</th>
<th>Tumor response</th>
<th>Acute or chronic</th>
<th>Notes on chronic response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right atrium, atrial appendage</td>
<td>Heart, right atrium</td>
<td>3D-CTRT</td>
<td>Simultaneous</td>
<td>10</td>
<td>High</td>
<td>No</td>
<td>Not applicable to SABR</td>
</tr>
<tr>
<td>Heart</td>
<td>Whole organ</td>
<td>3D-CTRT</td>
<td>Simultaneous</td>
<td>20</td>
<td>Moderate</td>
<td>No</td>
<td>Not applicable to SABR</td>
</tr>
<tr>
<td>Right ventricle</td>
<td>Whole organ</td>
<td>3D-CTRT</td>
<td>Simultaneous</td>
<td>30</td>
<td>Low</td>
<td>No</td>
<td>Not applicable to SABR</td>
</tr>
<tr>
<td>Left ventricle</td>
<td>Whole organ</td>
<td>3D-CTRT</td>
<td>Simultaneous</td>
<td>25</td>
<td>Low</td>
<td>No</td>
<td>Not applicable to SABR</td>
</tr>
<tr>
<td>Esophagus</td>
<td>Whole organ</td>
<td>3D-CTRT</td>
<td>Simultaneous</td>
<td>35</td>
<td>High</td>
<td>No</td>
<td>Not applicable to SABR</td>
</tr>
<tr>
<td>Heart</td>
<td>Whole organ</td>
<td>3D-CTRT</td>
<td>Simultaneous</td>
<td>40</td>
<td>Very High</td>
<td>No</td>
<td>Not applicable to SABR</td>
</tr>
<tr>
<td>Esophagus</td>
<td>Whole organ</td>
<td>3D-CTRT</td>
<td>Simultaneous</td>
<td>50</td>
<td>Low</td>
<td>No</td>
<td>Not applicable to SABR</td>
</tr>
</tbody>
</table>

Table 2: QUANTEC Summary—Approximate Dose/Volume/Outcome Data for Several Organs Following Conventional Fractionation (Unless Otherwise Noted) (Continued)
“[This table] summarizes tolerance doses from [two respected U.S. centers]. The doses are mostly unvalidated, and while most are based on toxicity observation and theory, there is a measure of educated guessing involved as well.”
Overview

Serious Complications Associated with Stereotactic Ablative Radiotherapy and Strategies to Mitigate the Risk

S.S. Lo *, A. Sahgal †, E.L. Chang ‡, N.A. Mayr §, B.S. Teh ¶, Z. Huang §§, T.E. Schechter ‡‡, M. Yao *, M. Machtay *, B.J. Slotman ††, R.D. Timmerman ‡‡

* Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Cleveland, OH, USA
† Department of Radiation Oncology, Princess Margaret Hospital and Odette Cancer Center, University of Toronto, Toronto, Ontario, Canada
‡ Department of Radiation Oncology, University of Southern California, Los Angeles, CA, USA
§ Department of Radiation Oncology, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
¶ Department of Radiation Oncology, The Methodist Hospital, Cancer Center and Research Institute, Houston, TX, USA
§§ Department of Radiation Oncology, East Carolina University, Greenville, NC, USA
‡‡ Department of Radiation Oncology, University of Colorado, Aurora, CO, USA
†† Department of Radiation Oncology, Vrije Universiteit Medical Center, Amsterdam, Netherlands
‡‡ Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA

Received 8 August 2012; received in revised form 7 November 2012; accepted 9 November 2012
Thoracic SABR Toxicities

- Radiation pneumonitis
- Bronchial necrosis/stenosis
- Brachial plexopathy
- Chest wall pain & rib fracture
- Dermatitis
- Esophageal fistula/stricture
- Cardiac
RTOG SABR Protocols

- **0236**: Phase II Trial of SBRT in Pts with Medically Inoperable Stage I/II NSCLC
 - closed to accrual and published JAMA 2010
- **0618**: Phase II Trial of SBRT in Pts with Operable Stage I/II NSCLC
 - closed to accrual and presented at ASCO 2013
- **0813**: Phase I/II Study of SBRT for Early Stage, Centrally Located, NSCLC in Medically Inoperable Patients
 - closed to accrual 2013
- **0915**: Randomized Phase II Study Comparing 34 Gy x 1 vs 12 Gy x 4 in Medically Inoperable Patients with Stage I Peripheral NSCLC
 - closed to accrual and presented ASTRO 2013
- **1021**: Randomized Phase III Study of Surgery vs SBRT Pts with Stage I NSCLC
 - closed after failing to accrue (10/420 pts)

- Target delineation
- Organs at risk
- Dose limits

All well-defined and remained stable throughout protocol progression
CONSIDERATION OF DOSE LIMITS FOR ORGANS AT RISK OF THORACIC RADIOThERAPY: ATLAS FOR LUNG, PROXIMAL BRONCHIAL TREE, ESOPHAGUS, SPINAL CORD, RIBS, AND BRACHIAL PLEXUS

FENG-MING (Spring) KONG, M.D., Ph.D.,* TIMOTHY RITTER, Ph.D.,* DOUGLAS J. QUINT, M.D.,†
Suresh Senan, M.D.,‡ Laurie E. Gaspar, M.D.,§ Ritsuko U. Komaki, M.D.,∥
Coen W. Hurkmans, Ph.D.,‖ Robert Timmerman, M.D.,# Andrea Bezjak, M.D.,**
Jeffrey D. Bradley, M.D., †† Benjamin Movsas, M.D., †† Lon Marsh, C.M.D.,* Paul Okunieff, M.D., §§
Hak Choy, M.D., # and Walter J. Curran, Jr., M.D. ††

Atlases for Organs at Risk (OARs) in Thoracic Radiation Therapy

Feng-Ming (Spring) Kong MD PhD
Leslie Quint MD
Mitchell Machtay MD
Jeffrey Bradley MD
Lung

- Auto-contour air-inflated lung parenchyma
- Always review & edit
 - Include small sized vessels (<1 cm or vessels beyond the hilar region)
 - Include collapsed lung
 - Exclude fluid
 - Exclude Proximal Bronchial Tree
 - Exclude GTV
Proximal Bronchial Tree

- Use mediastinal windows and include all layers of bronchi.
- Include (1) inferior 2cm of distal trachea, (2) carina, (3) R&L mainstem, (4) R upper, intermedius, middle, lower lobe bronchi, (5) L upper, lingular, and lower lobe bronchi.
Proximal Bronchial Tree

- Use mediastinal windows and include all layers of bronchi
- Include (1) inferior 2cm of distal trachea, (2) carina, (3) R&L mainstem, (4) R upper, intermedius, middle, lower lobe bronchi, (5) L upper, lingular, and lower lobe bronchi
Esophagus

- RTOG SABR protocols: 10cm above and below PTV
- RTOG Atlas: True anatomy from cricoid cartilage until it ends at stomach
- Use mediastinal windows and include all layers
Spinal Cord

- Bony limits of spinal canal
 - RTOG SABR protocols: 10cm above and below PTV
 - RTOG Atlas: True anatomy from base of skull (or as high as available on scan) to L2
 - Cricoid cartilage – L2
- Spinal cord ends around L1-L2
- Brachial plexus involves C5-T1 nerves which fall between neural foramina at C4-C5 and T1-T2 interspaces.
DEVELOPMENT AND VALIDATION OF A STANDARDIZED METHOD FOR CONTOURING THE BRACHIAL PLEXUS: PRELIMINARY DOSIMETRIC ANALYSIS AMONG PATIENTS TREATED WITH IMRT FOR HEAD-AND-NECK CANCER

WILLIAM H. HALL, M.D.,* MICHAEL GUIOU, PH.D.,* NANCY Y. LEE, M.D.,† ARTHUR DUBLIN, M.D.,‡ SAMIR NARAYAN, M.D.,* SRINIVASAN VIJAYAKUMAR, M.D.,* JAMES A. PURDY, PH.D.,* AND ALLEN M. CHEN, M.D.*

Departments of *Radiation Oncology and †Diagnostic Radiology, University of California, Davis, Cancer Center, Sacramento, CA; and ‡Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY

doi:10.1016/j.ijrobp.2008.03.004
Brachial Plexus

Subclavian vessels as surrogate

- **RTOG SABR protocols**
 - Major trunks of the brachial plexus will be contoured using the subclavian and axillary vessels as a surrogate for identifying the location of the brachial plexus.
 - Neurovascular complex will be contoured starting proximally at the bifurcation of brachiocephalic trunk into the jugular/subclavian veins (or carotid/subclavian arteries) and following along the route of the subclavian vein to the axillary vein ending after the neurovascular structures cross the second rib.

- **RTOG Atlas**
 - Similar, but using high-quality CT scanning with intravenous contrast, it is possible to identify the actual roots and trunks of the brachial plexus directly without the need for a surrogate.

Possible to identify BP without surrogate
Brachial Plexus

Scalars and Prevertebral Muscles

- Jugular process of occipital bone
- Mastoid process
- Styloid process
- Longus capitis muscle
- Posterior tubercle of transverse process of axis (C2)
- Longus coli muscle
- Scalene muscles
 - Anterior
 - Middle
 - Posterior
- Phrenic nerve
- Scalenus anterior
- Internal jugular vein
- 1st rib
- Common carotid artery
- Posterior tubercle of transverse process of C7 vertebra

Comparison of Embryonic Limb Organization to the Plexus of the Brachial Plexus

- Cervical plexus
 - Contribution from C4
 - Contribution from T2

- Thoracic plexus
 - Contribution from T6, T7

- Occipital branch
 - Cervical branch
 - Thoracic branch

- Brachial plexus
 - Musculocutaneous nerve
 - Median nerve
 - Ulnar nerve
 - Thoracodorsal nerve
 - Intercostal nerve

- Axillary nerve
 - Musculocutaneous nerve
 - Median nerve
 - Ulnar nerve
 - Thoracodorsal nerve
 - Intercostal nerve

- Radial nerve
 - Musculocutaneous nerve
 - Median nerve
 - Ulnar nerve
 - Thoracodorsal nerve
 - Intercostal nerve

- Thoracodorsal nerve
 - Musculocutaneous nerve
 - Median nerve
 - Ulnar nerve
 - Thoracodorsal nerve
 - Intercostal nerve

- Intercostal nerve
Brachial Plexus

- T1 nerve root passes under 1st rib before merging with rest of BP between clavicle and 1st rib.
 - T1 inadvertently not contoured often

Brachial Plexus
Ribs & Chest Wall

Ribs and chest wall limits may be exceeded for an otherwise excellent plan.

• RTOG SABR protocols
 – Ribs within 5 cm of the PTV should be contoured by outlining the bone and marrow.
 – Do not include the intercostal space as part of the ribs

• RTOG Atlas
 – Ribs and chest wall can be autosegmented from the lung with a 2 cm expansion.
 – Include the intercostal muscles.
 – Ribs within 3 cm of the PTV.
Heart, Pericardium & Great Vessels

• RTOG SABR protocols
 – Heart & Pericardium combined.
 • Start under the aorta and extend inferiorly to the apex.
 – Great Vessels = Aorta and vena cava, not the pulmonary artery and vein

• RTOG Atlas
 – Heart and Pericardium are separate structures
 – Heart is further divided into separate chambers
 – Great Vessels = Aorta, vena cava, pulmonary artery and vein.
Development and Validation of a Heart Atlas to Study Cardiac Exposure to Radiation Following Treatment for Breast Cancer

Mary Feng, M.D.,* Jean M. Moran, Ph.D.,* Todd Koelling, M.D.,† Aamer Chughtai, M.D.,‡ June L. Chan, M.D.,* Laura Freedman, M.D.,* James A. Hayman, M.D.,* Reshma Jaggi, M.D., D. Phil.,* Shruti Jolly, M.D.,* Janice Larouere, M.D.,* Julie Soriano, M.D.,* Robin Marsh, C.M.D.,* and Lori J. Pierce, M.D.*

Department of *Radiation Oncology; Internal Medicine, Division of †Cardiology and; ‡Radiology, University of Michigan Medical Center, Ann Arbor, Michigan
Heart
Summary

1. Lung SABR is on the rise.
2. Normal tissue dose tolerances in lung SABR are still evolving and only a limited experience exists from which to draw recommendations.
 - RTOG & TG-101
3. High level consistency in OAR delineation is necessary to develop more accurate toxicity measurement.
 - RTOG protocols & RTOG Lung Atlas
References

RTOG Lung SABR protocols: 0236, 0618, 0813, 0915, 1021

RTOG OAR Atlas for Thoracic RT

