Introduction to Breathing Monitoring Systems

Krishni Wijesooriya, PhD
University of Virginia
Learning Objectives

• To understand breathing monitoring systems, and the various approaches that may be employed for minimizing respiratory motion.
• To understand the importance in performing and End to end QA for any new motion management system introduced into a clinical program.
Respiratory Motion Solutions

Breath-hold techniques (ABC/DIBH)
 - Some are uncomfortable for patients, limited applicability
 - Increases treatment time
Respiratory Gating
 - Residual motion within gating window
 - Increases treatment time
 - Baseline shift
4D Radiotherapy
 - Hardware/software complexity
Motion management

• Varian RPM – gating and breath hold
• Elekta Active Breath Control
• Accuray Cyberknife Synchrony
• Novalis Brainlab ExacTrac
• Phillips Bellows system
• Anzai belt
• Calypso beacons
• Abdominal Compression
 – Elekta body frame
 – CIVCO Body Frame
 – Medical Intelligence BodyFix
• Abdominal Compression
 – Hof et al. 2003:
 • Lung tumor motion:
 – cc \rightarrow 5.1 +/- 2.4 mm
 – Lat \rightarrow 2.6 +/- 1.4
 – AP \rightarrow 3.1 +/- 1.5 mm

• Body Fix

• Hexapod
- Breath Hold (Can be coupled with RPM)
 - Onishi et al. 2003
 - Lung tumor motion is 2-3 mm
 - Gives reduced lung density because is end-inspiration
 - Active Breathing Coordinator™ (Elekta)
 - 15-30 sec breath hold
 - Many studies show excellent limitation of tumor motion \rightarrow 1-2 mm
- High Frequency Jet Ventilation (HFJVT)
 (Acutronic Medical Systems)
Active Breathing Control

- Consists of a spirometer to "actively" suspend the patients breathing at a predetermined position in the respiratory cycle
- A valve holds the respiratory cycle at a particular phase of respiration
- Breath hold duration: 15 - 30 sec
- Usually immobilized at moderate DIBH (Deep Inspiration Breath Hold) – 75% of the max inspiratory capacity
- Max experience: Breast
- Intrafractional lung motion reduced
- Mean reproducibility 1.6 mm
From pooled patient data, (A) craniocaudal, anterior posterior (AP), and mediolateral initial setup errors using active breathing control present before repositioning and (B) residual setup errors with active breathing control after imaging and repositioning.

L Dawson et al., “Accuracy of daily image guidance for hypofractionated liver radiotherapy with active breathing control”, IJ ROBP 62 (4):1247-1252, 2005
Initial patient random and absolute systematic errors, as well as distribution of non absolute systematic errors, in three directions before repositioning and residual random and systematic errors after imaging and repositioning.

<table>
<thead>
<tr>
<th></th>
<th>Initial random error</th>
<th>Initial systematic error</th>
<th>Residual random error</th>
<th>Residual systematic error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Craniocaudal (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>4.5</td>
<td>4.1</td>
<td>2.2</td>
<td>1.1</td>
</tr>
<tr>
<td>Range</td>
<td>2.0–8.7</td>
<td>0.8–10.3</td>
<td>1.6–4.1</td>
<td>0.0–3.1</td>
</tr>
<tr>
<td>Standard deviation, Σ</td>
<td>—</td>
<td>5.1</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>AP (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>3.2</td>
<td>2.4</td>
<td>2.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Range</td>
<td>1.4–6.9</td>
<td>0.1–7.4</td>
<td>0.0–5.1</td>
<td>0.0–4.3</td>
</tr>
<tr>
<td>Standard deviation, Σ</td>
<td>—</td>
<td>3.4</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Mediolateral (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>2.5</td>
<td>3.1</td>
<td>2.0</td>
<td>1.6</td>
</tr>
<tr>
<td>Range</td>
<td>0.7–6.6</td>
<td>0.5–6.3</td>
<td>0.6–4.6</td>
<td>0.0–4.0</td>
</tr>
<tr>
<td>Standard deviation, Σ</td>
<td>—</td>
<td>3.1</td>
<td>—</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Abbreviation: AP = anteriorposterior.

L Dawson et al., “Accuracy of daily image guidance for hypofractionated liver radiotherapy with active breathing control”, IJ ROBP 62 (4):1247-1252, 2005
Respiratory Gating/Management

- Real-time Position Management (RPM™) (Varian)
- Synchrony (Accuray)
- Tumor Tracking
 Varian/Novalis and Accuray
- GateRT (VisionRT)
Gating benefits and drawbacks

- Less straining for patient than breath-hold +
- Increased treatment time -

- Internal markers
 - Direct visualization of tumor (surroundings) +
 - Invasive procedure / side effects of surgery -

- External markers
 - Limited burden for patient +
 - Doubtful correlation between marker and tumor position
 - Intra-fractional
 - Inter-fractional
The Novalis body image-guided system showing oblique configurations of the x-ray imaging devices.
Respiratory Gating

Internal fiducials tracked with kv flouro for gating
Gated Radiotherapy
External or internal markers
Usually <50% duty cycle
Some residual motion
At and around exhalation, motion is minimized
Bellows Device

Equivalent External Surrogates

Target volumes
Centroid variations in MIP
Relative amplitude differences
Latency – RPM has faster response time
Does not translate to differences in:
 Image quality
 Tumor delineation
Comparison of Phantom breathing traces obtained using Varian’s RPM and Philips’ bellows pneumatic belt for six different programmed breathing curves derived from patient data. Strong agreement was observed between breathing traces for all eight phantom cases studied.
Latency comparison: RPM and Bellows

Absolute time differences between the calculated end-inhale peak times from the bellows and RPM waveforms calculated to characterize the latency difference between the systems (i.e., RPM end-inhale peaks less the bellows end-inhale peaks, with a positive value indicating that RPM end-inhale occurred before bellows end-inhale).
Anzai gating system

Respiratory signal correlation between the Varian RPM system and Anzai system

Varian RPM - dashed
Anzai systems - solid
Normal breathing - top
Abnormal breathing - bottom
Cyberknife (Accuray)

- Robotic arm containing LINAC tracks motion
Moving lesions: Synchrony vest
Hybrid tracking model of Cyberknife

- Patient wears a west with infrared markers
- Internal gold fiducial motion is correlated to the external surface motion (30Hz)
- During radiation robot tracks the tumor based on a motion correlation model
- This is updated throughout the treatment with each set of acquired Xray images
- Two orthogonal X-ray sources/detectors are mounted in the room

S Dieterich, “Cyberknife image guided delivery and quality assurance”, IU ROJP 71(1) S126-S130:2008
Respiratory tracking in Cyberknife

Infrared emitters attached to the patient’s chest to monitor respiration externally.

External internal correlation error
Cyberknife

Total target excursion (top curve) and correlation error (bottom Curve) in mm for a clinical case.

Report of AAPM TG 135: Quality assurance for robotic radiosurgery

Sonja Dieterich
Stanford University Cancer Center, Stanford, California 94305

Carlo Cavedon
Azienda Ospedaliera Universitaria Integrata di Verona, U.O. di Fisica Sanitaria, Verona, 37126 Italy

Cynthia F. Chuang
University of California San Francisco, Department of Radiation Oncology, San Francisco, California 94143-0226

Alan B. Cohen
Accuray Inc, Sunnyvale, California 94089

Jeffrey A. Garrett
Mississippi Baptist Medical Center, Jackson, Mississippi 39202

Charles L. Lee
CK Solutions, Inc., Edmond, Oklahoma 73034

Jessica R. Lowenstein
UT MD Anderson Cancer Center, Houston, Texas 77030

Maximian F. d’Souza
St Anthony Hospital, Oklahoma City, Oklahoma 73101

David D. Taylor Jr.
US Radiosurgery, Nashville, Tennessee 37204

Xiaodong Wu
University of Miami, Department of Radiation Oncology, Miami, Florida 33101

Cheng Yu
USC Keck School of Medicine, Los Angeles, California 90033

(Received 31 August 2010; revised 18 February 2011; accepted for publication 28 February 2011; published 25 May 2011)
1. Which of the following is a list of respiratory motion monitoring systems

- 80% 1. Varian RPM system, Synchrony RTS system, Philips bellows
- 2% 2. Synchrony RTS system, BodyFIX system from Elekta
- 1% 3. Philips bellows system, Varian RPM system, Aquaplast H&N mask
- 0% 4. Anzai pressure belt, BodyFIX system from Elekta
- 18% 5. Varian RPM system, Synchrony RTS system, bodyFix system from Elekta
• Answer: 1

• References:
 • S Dieterich, “Cyberknife image guided delivery and quality assurance”, IJROBP 71(1) S126-S130:2008
Tumor localization during TX
For gating or breath-hold techniques

• SBRT
 – kVCT performed mostly without fiducials (except for lesions near the diaphragm or mediastinum)
 – kV fluoro (Brainlab, Cyberknife) needs fiducials

Visicoil for mobile tumors
 • Near chest wall – percutaneous placement
 • Central – bronchoscopic placement

Calypso beacons (protocol only)
Gold Fiducials
Online Tx Verification

- Based on MV imager
- Based on kV imager
How to ensure treatment accuracy when treatment is governed by
 • Internal markers
 • External signals
How to ensure treatment accuracy when tumor position is predicted using implanted fiducial markers

Surrogates used to generate gating signals: gold markers >1mm,
1. Verify no marker migration:
 • Shown to have minimal migration (<1.5mm) for liver/prostate
 • Lung tumors: small movement only for peripheral lung tumors
2. Marker migration could be caught by:
 • Large - measuring the inter marker distance is KV or MV planar imaging
 • Small- comparing distance between marker and tumor in CT
3. Use a fluoroscopic tracking system (Mitsubishi electronics Co. Ltd, Japan) to verify the location of the markers and gate

Visicoil Fiducials

The VISICOIL™ Advantage...
... for Image Guided Radiation Therapy
Calypso

The Flat Panel Array

- The array is an extendible flat panel
- Contains the source coils that generate the EM signal
- Source coils emit frequencies between 275 and 550 kHz
- 1 to 2% attenuation
During radiation prostate is constantly monitored - Calypso
Lung and Spine (Clinical Phase I)
- Calypso transponders successfully implanted into 4 spine and 2 lung SBRT patients
- Position of transponders verified by kV X-ray prior to treatment
 - All 4 spine cases remained stable
 - One lung case stable, other pt evacuated transponder
- All 6 patients tracked successfully. Spine transponders approached maximum distance for tracking (25 cm)

Willoughby et al., IJROBP 2008 72(1):S642- S643
How to ensure treatment accuracy when internal target position is predicted using external surrogates

Surrogates used to generate gating signals
1. External surrogates: markers placed on the patients outside surface
 1. Varian RPM system
 2. Active breathing control using spirometry
 3. Siemens Anzai pressure belt
 4. Phillips bellows system
 5. Medspira respiratory monitoring bellows system
To ensure an Accurate Externally Gated Treatment, QA steps

During patient setup tumor home position at this fractionation should be matched to the reference home position – image guidance (x-ray, Ultrasound, implanted E.M transponders), lung: tumor or diaphragm, liver: implanted fiducial markers
To ensure an Accurate Externally Gated Treatment, QA steps
Indirect Fluoroscopic Tracking

Issues with direct tracking

- Poor image quality
- Low target contrast
- Tumor has no clear shape

Track the invisible tumor by tracking a visible surrogate

Diaphragm as an internal surrogate

\[y_0 = a + \sum b_i s_i \]

To Ensure an Accurate Externally Gated Treatment, QA Steps

4. During Tx delivery, measures should be taken to ensure constant tumor home position (tumor should be at the same position when the beam is on)

 - breath coaching, visual aids- stable EOE position by two straight lines for amplitude gating

 (A), and (c) - free breathing – baseline shift & irregular breathing
 (b), and (d) - audio-visual coaching

3. Sources of 4DCT image artifacts could be minimized by:

60% 1. Coaching patient breathing so a reproducible breathing pattern is achieved
0% 2. Positioning the patient prone
3% 3. Using the bellows system as opposed to the RPM system
1% 4. Using the Aquaplast mask
36% 5. Using a Breath hold device such as ABC
Answer: 1

References:

QA challenges for breath hold

Liver, lung, breast
Reproducibility of breath hold between every breath hold and between fractions.
Spirometer to measure airflow.
Signal drift due to air flow through patient’s nose, and mouth
RPM to monitor breath hold (19,20)
1. Reproducible baseline – an essential first step to breath hold reproducibility - Patient training (Ref 22), and visual feedback
2. Accuracy of externally placed monitors in predicting internal positions of tumor and nearby organs – Radiographs, kv Orthogonal imaging (Ref: Allyson), Flouroscopy – CBCT is too slow to acquire within 15 - 20s unless breaking in the middle
Quasar phantom

Cork insert with small (d=15mm) and large (d = 30mm) plastic spheres
RPC motion phantom credentialing

Institution requests phantom
RPC ships phantom/moving platform
Institution
 Fills with water
 Performs 4DCT scan
 Prepare Tx plan
delivers plan with gating (motion <5mm)
drains water
 returns phantom, sends data electronically
RPC compares measurements with plan
RPC Lung Phantom
RPC Lung Motion Phantom Benchmark

RPC
Radiological Physics Center

Report of
Lung
Phantom Irradiation

Date of Report: March 16, 2010
Institution: University of Virginia Health System – Moser
Physicist: Krishna Wijesooriya
Radiation Machine: Varian, Trilogy (750) – 6 MV
Collimator: MLC
Technique: IMRT – Segmented (step and shoot) MLC
Treatment Planning System: ADAC Pinnacle (3D/IMRT) v8.0m – Adaptive Convex

Date of Irradiation: January 21, 2010

Description of procedure:
An anthropomorphic lung phantom incorporating a cylindrical dosimetry insert that simulated the left lung was placed in the supine position in a CT scanner and imaged. The insert contained a spherical centered target. TLD capsules located near the center of the target provided point dose information and three sheets of GFChromatic™ Dosimetry Media provided dose distributions in the axial, coronal, and sagittal planes. The phantom included heart and spinal cord structures, each one containing one TLD capsule. The right lung was also included. The phantom with the insert was irradiated to approximately 6 Gy using a IMRT technique and dose calculation with correction for tissue heterogeneity.

A reciprocating table connected to a motor controller was used to simulate respiratory motion based on the method to account for respiratory induced target motion adopted by the institution. A previously programmed breathing cycle was used during treatment and CT procedures.

The dosimetric precision of the TLD is 3%, and the spatial precision of the film and dosimeter system is 1 mm.

Summary of TLD and film results:

<table>
<thead>
<tr>
<th>Location</th>
<th>RPC vs. Tld</th>
<th>Criteria</th>
<th>Acceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTV, TLD sup</td>
<td>0.97</td>
<td>0.92 – 1.02</td>
<td>Yes</td>
</tr>
<tr>
<td>PTV, TLD int</td>
<td>0.96</td>
<td>0.92 – 1.02</td>
<td>Yes</td>
</tr>
<tr>
<td>Left/Right</td>
<td>1.0 mm</td>
<td>± 0.5 mm</td>
<td>Yes/Yes</td>
</tr>
<tr>
<td>Posterior/Anterior</td>
<td>1.1 mm</td>
<td>± 0.5 mm</td>
<td>Yes/Yes</td>
</tr>
<tr>
<td>Inferior/Superior</td>
<td>1.0 mm</td>
<td>± 0.5 mm</td>
<td>Yes/Yes</td>
</tr>
</tbody>
</table>

The phantom irradiation results listed in the table above do meet the criteria established by the RPC in collaboration with the cooperative study groups. Therefore, your institution has satisfied the phantom irradiation component of the credentialing process to enter patients onto clinical trials.

TLD and Film Analysis by: Paola Alvarez, M.S.

Report Checked by: [signature]

Radiological Physics Center
RPC motion phantom credentialing

Verifies the full process of 4D

- 4DCT simulation – motion amplitude you set up in the motion platform should be the same during motion study in 4DCT analysis
- Creating the ITV
- Selecting and using the gating phases
- Pre treatment KV/or portal imaging to verify and shift the target
- Using the time averaged planning CT to align to CBCT
- Gated treatment
Measurement Setup:
Set the motion range 10 mm –SI of Quasar phantom and image using 4DCT (slice thickness: 0.2 cm) synchronized with RPM.

9.87 mm (0.13 mm deviation)
Annual QA – Treatment with gating

Annual QA – Temporal accuracy of phase/amplitude gating
TG 142

<table>
<thead>
<tr>
<th>motion phantom</th>
<th>period (s)</th>
<th>gating time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.4</td>
<td>2.48</td>
</tr>
<tr>
<td>imaging</td>
<td></td>
<td>2.55</td>
</tr>
<tr>
<td>RPM</td>
<td></td>
<td>2.50</td>
</tr>
</tbody>
</table>

TG-142 tolerance: 100 ms of expected
Our Results are < 67 ms

Measurement Setup:
Using OmniPro IMRT software, set 20 ms/ frame (50Hz) and measure the images synchronized with RPM measurement. RPM signal has a time resolution 33ms/frame (30 Hz)
Annual QA – Treatment with gating

TG 142

<table>
<thead>
<tr>
<th>Cube (5.0cm)</th>
<th>6 MV Gating</th>
<th>Output</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cube (10.0cm)</th>
<th>Energy Reading</th>
<th>Output</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cube (5.0cm)</th>
<th>15 MV Gating</th>
<th>Output</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cube (10.0cm)</th>
<th>Energy Reading</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.2</td>
<td></td>
</tr>
</tbody>
</table>
2. Prior to establishing a lung SBRT program in your clinic, how do you verify the accuracy of motion management program in your clinic?

98% 1. Perform an end to end QA requesting a RPC motion phantom for lung or Quasar motion phantom with lung density material

0% 2. Perform end to end QA using your IBA matrixx system

1% 3. Perform end to end QA using your Delta4 device

2% 4. Perform end to end Qa using your annual scanning system

0% 5. Measure the energy of the machine with and without gating
Answer: 1

References:

• • TG 101

Summary | Conclusion

Many options to manage tumor motion due to respiration

End to end QA prior to establishing a 4D program

Patient specific internal anatomy based breathing accuracy need to be verified prior to Tx

Monthly, and annual QA should be performed on all aspects of the 4D program
Acknowledgements

Thanks to University of Virginia Dept. of Radiation Oncology!!