Encrypted login | home

Program Information

Dose Variation at Bone in Small-Animal Irradiation: A Monte Carlo Study Using Monoenergetic Photon Beams


J Chow

A Vuong1 , J Chow2*, (1) Ryerson University, Toronto, ON, (2) Princess Margaret Cancer Center, Toronto, ON

Presentations

SU-E-T-285 (Sunday, July 12, 2015) 3:00 PM - 6:00 PM Room: Exhibit Hall


Purpose:
The aim of this study is to investigate the variation of bone dose on photon beam energy (keV – MeV) in small-animal irradiation. Dosimetry of homogeneous and inhomogeneous phantoms as per the same mouse computed tomography image set were calculated using the DOSCTP and DOSXYZnrc based on the EGSnrc Monte Carlo code.

Methods:
Monte Carlo simulations for the homogeneous and inhomogeneous mouse phantom irradiated by a 360 degree photon arc were carried out. Mean doses of the bone tissue in the irradiated volumes were calculated at various photon beam energies, ranging from 50 keV to 1.25 MeV. The effect of bone inhomogeneity was examined through the Inhomogeneous Correction Factor (ICF), a dose ratio of the inhomogeneous to the homogeneous medium.

Results:
From our Monte Carlo results, higher mean bone dose and ICF were found when using kilovoltage photon beams compared to megavoltage. In beam energies ranging from 50 keV to 200 keV, the bone dose was found maximum at 50 keV, and decreased significantly from 2.6 Gy to 0.55 Gy, when 2 Gy was delivered at the center of the phantom (isocenter). Similarly, the ICF were found decreasing from 4.5 to 1 when the photon beam energy was increased from 50 keV to 200 keV. Both mean bone dose and ICF remained at about 0.5 Gy and 1 from 200 keV to 1.25 MeV with insignificant variation, respectively.

Conclusion:
It is concluded that to avoid high bone dose in the small-animal irradiation, photon beam energy higher than 200 keV should be used with the ICF close to one, and bone dose comparable to the megavoltage beam where photoelectric effect is not dominant.


Contact Email: