Encrypted login | home

Program Information

Dosimetric Impact of Beam Energies and Jaw Tracking On Intracranial Tumors Using RapidArc

S Hossain

S Hossain*, V Keeling , I Ali , S Ahmad , O Algan , University of Oklahoma Health Sciences Center, Oklahoma City, OK


SU-E-T-326 (Sunday, July 12, 2015) 3:00 PM - 6:00 PM Room: Exhibit Hall

Purpose: To determine the dosimetric impact of jaw tracking and beam energies on dose conformity and normal-brain-tissue doses for intracranial tumors using VMAT (RapidArc).

Methods:Seven patients with 1-2 and three patients with 4-6 intracranial tumors were planned using RapidArc for Varian TrueBeam STx machine with beam energies 6MV-FFF (Flattening-Filter-Free), 8MV, 10MV, and 10MV-FFF. The prescription dose ranged from 14-23Gy. Between 2 and 8 arcs were used with the following geometries: 2 full coplanar arcs and the non-coplanar half arcs. Plans were optimized (jaw tracking ON) with a high priority to Normal-Tissue-Objective and normal-brain-tissue. Plans were calculated on 1mm grid size using AAA algorithm and then normalized so that 99% of each target volume received the prescription dose. Plans for the 6MV-FFF were also optimized without jaw tracking (No-JT) for comparison. Plan quality was assessed by target coverage using Paddick Conformity Index (PCI), sparing of normal-brain-tissue through analysis of V4Gy, V8Gy and V12Gy, and integral dose.

Results:The average PCI ± standard deviation was 0.76±0.21 and 0.76±0.22 for 6MV-FFF and 10 MV-FFF, respectively. The average ratio in normal brain tissue volume (reported as follows V4,V8,V12) were (1.12±0.07,1.12±0.07,1.14±0.04), (1.12±0.08,1.12±0.09,1.13±0.06), (1.19±0.10,1.18±0.10,1.20±0.04), and (1.04±0.03,1.03±0.03,1.03±0.04) for 8MV/6MV-FFF, 10MV-FFF/6MV-FFF, 10MV/6MV-FFF, 6MV-FFF No-JT/6MV-FFF, respectively. Statistically significant differences in normal-brain-tissue for V4, V8, and V12 were observed in all cases for the different energies (p-values <0.05). V4 data shows significant differences in JT vs. No-JT (p=0.04), however no difference was found for V8 and V12. Brain tissue sparing from best to worst occurred in this order 6MV-FFF, 6MV-FFF no-JT, 10MV-FFF, 8MV, and 10MV. The average ratio of integral brain dose was 1.05±0.04 (p=0.21), 1.04±0.05 (p=0.33), 1.09±0.06 (p=0.04), and 1.02±0.06 (p=0.61) for 8MV/6MV-FFF, 10MV-FFF/6MV-FFF, 10MV/6MV-FFF, and 6MV-FFF No-JT/6MV-FFF, respectively.

Conclusion:Normal brain tissue and integral dose improved using the lower energy and FFF beams, though plan conformity showed energy independence.

Contact Email: