Encrypted login | home

Program Information

A Study of Dose Falloff Gradient in RapidArc Planning of Lung SBRT

no image available
D Desai

D Desai1*, S Srinivasan1 , H Elasmar1 , E Johnson2 , (1) Memorial Health Care System, Chattanooga, TN, (2) Univ Kentucky Medical Ctr, Lexington, KY

Presentations

SU-E-T-78 (Sunday, July 12, 2015) 3:00 PM - 6:00 PM Room: Exhibit Hall


Purpose:Rapid dose falloff beyond PTV is an important criterion for normal tissue sparing in SBRT. RTOG protocols use D2cm and R50% for plan quality evaluation. This study is aimed at analyzing the dose falloff gradient beyond the PTV extending into normal tissue structures and to ascertain the impact of PTV geometry and location on the dose falloff gradient in RapidArc planning of lung SBRT

Methods:In this retrospective study, we analyzed 39 clinical RapidArc lung SBRT treatment plans that met RTOG-0915 criteria. Planning was done on Eclipse 8.9 for delivery on either Novalis NTx or TrueBeam STx equipped with HD MLCs. PTV volumes ranged between 5.3 and 113 cc (2.2 to 6 cm sphere equivalent diameter respectively) and their geographic locations were distributed in both lungs. 6X, 6X-FFF, 10X, and 10X-FFF energies were used for planning. All of these SBRT plans were planned using either 2 or 3 full or hemi arcs, with moderate couch kicks. Dose falloff gradients were obtained by generating 7 concentric 5 mm rings beyond PTV surface. Mean dose in each ring is used to evaluate percentage dose falloff gradient as a function of distance from the PTV surface.

Results:The mean percentage dose falloff beyond PTV surface in all plans followed an exponential decay and the data was modeled with double exponential decay fit. Photon energy selection in the plan had a minimal impact on the mean percentage dose fall off beyond PTV surface.

Conclusion:Dose falloff beyond PTV surface as a function of distance can be ascertained by the use of the double exponential decay fit coefficients in RapidArc planning of lung SBRT. This will help also in plan quality evaluation in addition to D2cm and R50% defined by RTOG.


Contact Email: