Encrypted login | home

Program Information

MR Geometric Distortion Dependency On Imaging Sequence, Acquisition Orientation and Receiver Bandwidth of a Dedicated 1.5T MR-Simulator

no image available
M Law

M Law*, J Yuan , O Wong , S Yu , Hong Kong Sanatorium & Hospital, Hong Kong, Hong Kong, Hong Kong


SU-G-IeP1-8 (Sunday, July 31, 2016) 4:00 PM - 4:30 PM Room: ePoster Theater

Purpose: To investigate the 3D geometric distortion of four potential MR sequences for radiotheraptic applications, and its dependency on sequence-type, acquisition-orientation and receiver-bandwidth from a dedicated 1.5T 700mm-wide bore MR-simulator (Magnetom-Aera, Sienmens Healthcare, Erlangen, Germany), using a large customized geometric accuracy phantom.

Methods: This work studied 3D gradient-echo (VIBE) and spin-echo (SPACE) sequences for anatomical imaging; a specific ultra-short-TE sequence (PETRA) potentially for bone imaging and MR-based dosimetry; and a motion-insensitive sequence (BLADE) for dynamic applications like 4D-MRI. Integrated geometric-correction was employed, three orthogonal acquisition-orientations and up to three receiver-bandwidths were used, yielding 27 acquisitions for testing (Table 1a).

A customized geometric accuracy phantom (polyurethane, MR/CT invisible, WxLxH:55x55x32.5cm3) was constructed and filled with 3892 spherical markers (6mm diameter, MR/CT visible) arranged on a 25mm-interval 3D isotropic-grid (Fig.1). The marker positions in MR images were quantitatively calculated and compared against those in the CT-reference using customized MatLab scripts.

Results: The average distortion within various diameter-of-spherical-volumes (DSVs) and the usable DSVs under various distortion limits were measured (Tables 1b-c). It was observed that distortions fluctuated when sequence-type, acquisition-orientation or receiver-bandwidth changed (e.g. within 300mm-DSV, the lowest/highest average distortions of VIBE were 0.40mm/0.59mm, a 47.5% difference).

According to AAPM-TG66 (<1mm distortion, left-most column of Table 1c), PETRA (Largest-DSV:253.9mm) has the potential on brain treatment, while BLADE (Largest-DSV:207.2mm) may need improvement for thoracic/abdominal applications. The results of VIBE (Largest-DSVs:294.3mm, the best among tested acquisitions) and SPACE (Largest-DSVs:267.7mm) suggests their potentials on head and neck applications. These Largest-DSVs were attained on different acquisition-orientations and receiver-bandwidths.

Conclusion: Geometric distortion was shown to be dependent on sequence-type, acquisition-orientation and receiver-bandwidth. In the experiment, no configuration in any one of these factors could consistently reduce distortion while the others were varying. The distortion analysis result is a valuable guideline for sequence selection and optimization for MR-aided radiotherapy applications.

Contact Email: