Encrypted login | home

Program Information

A Tool for Automatic Calculation of Delivered Dose Variation for Off-Line Adaptive Therapy Using Cone Beam CT

B Zhang

B Zhang*, S Lee , S Chen , J Zhou , K Prado , W D'Souza , B Yi , University of Maryland School of Medicine, Baltimore, MD


SU-C-202-3 (Sunday, July 31, 2016) 1:00 PM - 1:55 PM Room: 202

Purpose:Monitoring the delivered dose is an important task for the adaptive radiotherapy (ART) and for determining time to re-plan. A software tool which enables automatic delivered dose calculation using cone-beam CT (CBCT) has been developed and tested.

Methods:The tool consists of four components: a CBCT Colleting Module (CCM), a Plan Registration Moduel (PRM), a Dose Calculation Module (DCM), and an Evaluation and Action Module (EAM). The CCM is triggered periodically (e.g. every 1:00 AM) to search for newly acquired CBCTs of patients of interest and then export the DICOM files of the images and related registrations defined in ARIA followed by triggering the PRM. The PRM imports the DICOM images and registrations, links the CBCTs to the related treatment plan of the patient in the planning system (RayStation V4.5, RaySearch, Stockholm, Sweden). A pre-determined CT-to-density table is automatically generated for dose calculation. Current version of the DCM uses a rigid registration which regards the treatment isocenter of the CBCT to be the isocenter of the treatment plan. Then it starts the dose calculation automatically. The AEM evaluates the plan using pre-determined plan evaluation parameters: PTV dose-volume metrics and critical organ doses. The tool has been tested for 10 patients.

Results:Automatic plans are generated and saved in the order of the treatment dates of the Adaptive Planning module of the RayStation planning system, without any manual intervention. Once the CTV dose deviates more than 3%, both email and page alerts are sent to the physician and the physicist of the patient so that one can look the case closely.

Conclusion:The tool is capable to perform automatic dose tracking and to alert clinicians when an action is needed. It is clinically useful for off-line adaptive therapy to catch any gross error. Practical way of determining alarming level for OAR is under development.

Contact Email: