Encrypted login | home

Program Information

Development of a Rapid Cardiac Contouring Tool Using Landmark-Driven Modeling

no image available
C Pelletier

C Pelletier1*, E Mosher2 , C Lee3 , C Lee2 , J Jung1 , (1) East Carolina University Greenville, NC, (2) National Cancer Institute, Rockville, MD, (3) University of Michigan, Ann Arbor, MI

Presentations

SU-F-T-405 (Sunday, July 31, 2016) 3:00 PM - 6:00 PM Room: Exhibit Hall


Purpose:This study aims to develop a tool to rapidly delineate cardiac substructures for use in dosimetry for large-scale clinical trial or epidemiological investigations. The goal is to produce a system that can semi-automatically delineate nine cardiac structures to a reasonable accuracy within a couple of minutes.

Methods:The cardiac contouring tool employs a Most Similar Atlas method, where a selection criterion is used to pre-select the most similar model to the patient from a library of pre-defined atlases. Sixty contrast-enhanced cardiac computed tomography angiography (CTA) scans (30 male and 30 female) were manually contoured to serve as the atlas library. For each CTA 12 structures were delineated. Kabsch algorithm was used to compute the optimum rotation and translation matrices between the patient and atlas. Minimum root mean squared distance between the patient and atlas after transformation was used to select the most-similar atlas. An initial study using 10 CTA sets was performed to assess system feasibility. Leave-one patient out method was performed, and fit criteria were calculated to evaluate the fit accuracy compared to manual contours.

Results:For the pilot study, mean dice indices of .895 were achieved for the whole heart, .867 for the ventricles, and .802 for the atria. In addition, mean distance was measured via the chord length distribution (CLD) between ground truth and the atlas structures for the four coronary arteries. The mean CLD for all coronary arteries was below 14mm, with the left circumflex artery showing the best agreement (7.08mm).

Conclusion:The cardiac contouring tool is able to delineate cardiac structures with reasonable accuracy in less than 90 seconds. Pilot data indicates that the system is able to delineate the whole heart and ventricles within a reasonable accuracy using even a limited library. We are extending the atlas sets to 60 adult males and females in total.


Contact Email: