Encrypted login | home

Program Information

On Spinal Nerve Toxicity From Single-Session SAbR in Pigs and the Translation of Small Animal NTCP Models

no image available
B Hrycushko

B Hrycushko1*, P Medin1 , (1) UT Southwestern Medical Center, Dallas, TX

Presentations

WE-AB-207B-10 (Wednesday, August 3, 2016) 7:30 AM - 9:30 AM Room: 207B


Purpose: The incidence of peripheral neuropathy has risen with increased utilization of SAbR. There is no consensus regarding the dose-tolerance of the peripheral nervous system. In 2015, we commenced an investigation to test the hypotheses that single-session irradiation to the pig spinal nerves exhibit a similar dose-tolerance as that of the spinal cord and that a dose-length effect exists. This work evaluates the direct application of small animal NTCP models to both large animal spinal cord and preliminary peripheral nerve data.

Methods: To date, 16 of 25 Yucatan minipigs have received single-session SAbR to a 1.5cm length and 4 of 25 have received irradiation to a 0.5cm length of left-sided C6-C8 spinal nerves. Toxicity related gait change has been observed in 13 animals (9 from the long length group and 4 from the short). This preliminary data is overlaid on several dose-response models which have been fit to rodent spinal cord tolerance experiments. Model parameters define a toxicity profile between a completely serial or parallel behaving organ. Adequacy of model application, including how length effects are handled, to published minipig spinal cord dose-response data and to preliminary peripheral nerve response data was evaluated through residual analysis.

Results: No rodent-derived dose-response models were directly applicable to all pig data for the different lengths irradiated. Several models fit the long-length irradiated spinal cord data well, with the more serial-like models fitting best. Preliminary data on the short-length irradiation suggests no length effect exists, disproving our hypothesis.

Conclusion: Direct application of small-animal NTCP models to pig data suggests dose-length effect predictions from small animal data may not translate clinically. However, the small animal models used have not considered dose heterogeneity and it is expected that including the low-to-mid dose levels in the penumbral region will improve this match.

Funding Support, Disclosures, and Conflict of Interest: This work was funded by the Cancer Prevention Research Institute of Texas (CPRIT).


Contact Email: