Ultrasound Guided Prostate Implants
Task Group - 64
David E. Mellenberg, Ph.D.
Department of Radiology
Division of Radiation Oncology
University of Iowa

Task Group -64 Members

■ Yan Yu, Chairman, Lowell Anderson, Zuofeng Li, David Mellenberg, Ravinder Nath, Michael Schell, Frank Waterman, Andrew Wu, John Blasko

TG-64 Report

- **■** History
- Procedure
 - **♦** Volume Study
 - **♦** Treatment Planning
 - ◆ Seed Preparation
 - **♦** Implant
 - ◆ Final Dosimetry and Implant Evaluation
- Medical Physics Insights regarding USGPI's

History of Prostate Implants

- Pasteau and Degrais 1913 Radium Intra-urethral
- Radium tubes inserted through the perineum or bladder
- Flocks 1952 Injection of Colloidal Gold-198
- Gold-198 seed implantation
- Brachytherapy treatment of the prostate died out in the 1960's due to technical difficulties and complications as well as EBRT's advance
- I-125
 - ◆ Hilaris and Whitmore MSKCC 1972
 - ◆ Retropubic approach open procedure with direct visualization of the prostate
 - ♦ 5 yr survival 79% 606 patients
 - ♦ 96% survival T1
 - ♦ 76% survival T2
 - ♦ 69% survival T3
 - ♦ 13% survival T4
- Comparison with EBRT
 - ◆ Morton and Peschel Yale University 1988
 - Retropubic Implant vs EBRT 9 year disease free survival
 - 88% vs 74% for stage A2
 - 62% vs 63% for stage B
 - 30% vs 37% for stage C
 - ◆ Schellhammer et. al.
 - ◆ Retropubic Implant 5 year disease free survival
 - 95%, 65% and 34% for well, moderate and poorly differentiated lesions

Complications of retropubic prostate implants

- ◆ Fowler et.al.
 - ♦ Intraoperative
 - nerve injury 4%
 - excessive bleeding 2%
 - ◆ Postoperative 23%
 - lymphoceles, hematomas, abscesses, celluitis and wound complications
 - pulmonary embolism, 7%
 - obstruction

- ◆ Late complications 28%
 - lymphedema, voiding symptoms, rectal symptoms, impotence, wound healing, hematuria
- Retropubic approach
 - ◆ Poor seed and dose distribution
 - ◆ Significant complications
 - ◆ Poor long term clinical control
 - ◆ Walsh nerve sparing prostatectomy
 - ◆ High energy EBRT
- Nag 1985 TRUS and Fluoroscopy guided implants
- Blasko, Grimm and Ragde
 - ◆ Seattle technique
 - ◆ Popularized prostate implantation

Advantages of the Transperineal Approach

- Avoids the morbidity of laparotomy
- Outpatient procedure
- Early recovery and return to normal patient lifestyle
- Minimal bleeding
- Low long term morbidity
- One time procedure
- Well tolerated
- Maintenance of sexual function

Procedure for Implantation

- Volume study
- **■** Planning
- Seed preparation
- Procedure
- Final Dosimetry and Evaluation

Volume Study

- Stepwise ultrasound scans through the prostate
- Patient in same position as during implant procedure
- \blacksquare 1/2 cm steps
- Virtual grid on US scan
- Displacement of Prostate by US probe
- Volume determined by CT, MR and US
 - ◆ Not in agreement
 - ◆ Plexus Neuro-vascular
- US Gold standard for Volume determination in Urology
 - ◆ Deformation of Prostate by probe
 - ◆ Prolate elipsoid
 - ♦ 4/3 Π a b c
 - ♦ 4.19 a b c
 - ♦ 0.52 A B C

US vs CT vs MRI Prostate

- CT largest volume
 - ◆ 15-30% larger than US
- MRI
 - ◆ Variable, but slightly larger than US
- US
 - ◆ Used for planning
 - ◆ Margin may be used

RTOG Study Margin

- Expand US volume 2-3 mm in the anterior dimension
- Expand US volume 2-3 mm in the lateral dimensions
- Maintain posterior border
- Expand US volume 5 mm cephalad and caudad

RTOG Study

- CTV Clinical Target Volume
 - ◆ Pre-implant TRUS prostate
- PTV Planning Target Volume
 - **◆** Expanded CTV
- ETV Evaluation Target Volume
 - ◆ Post implant CT definition of the prostate

Planning

- Transfer US images to TPC
 - ◆ Digitize images
 - ◆ Prostate
 - Urethra
 - Other structures
 - ◆ Capture video image in computer
 - ◆ Contour prostate and urethra on screen
 - ◆ Add appropriate margins
 - ◆ Overlay implant template
- Determine prescribed dose
 - ◆ 144 Gy I-125 Implant alone
 - ◆ 120 Gy I-125 XRT + Implant
 - ◆ 115 Gy Pd-103 Implant alone
 - ♦ 90 Gy Pd-103 XRT + Implant
- Distribute seeds in prostate using TPC tools
 - ◆ Follow one of several philosophies
- Guess initial activity and adjust seeds and activity as needed

Prostate Margins

- Margins constitute dose escalation
- Increase in seed number and seed strength
- Seeds in dissolvable suture
- Seed placement error
- Neuro-vascular bundle
- Seed migration to lung

Seed Placement Philosophies

- Uniform Loading
 - ◆ 1 cm grid
- Modified Uniform Loading
 - ◆ Eliminate seeds around the Urethra
- Non-Uniform Loading
 - ◆ Uniform loading with several central needles removed
- Peripheral Loading
 - ◆ Either high activity or 2X the number of seeds on the periphery

Implant Philosophies

- Seed activity
- Urethral dose
- Rectal dose
- Seed placement error
- Seed migration
- Prostate size
- Seed Number

Implant Philosophies

- All approaches can meet goals
 - ◆ Coverage
 - ◆ Urethral and rectal sparing
- DVH analysis of preplan
 - ◆ Compare different implant philosophies
 - ◆ Adjust seed Air Kerma Strength to optimal
- Automated methods of preplanning
 - ♦ Yu et. al.

Rational for Modified Uniform and Peripheral Loading

- Disease is in periphery of the prostate gland
- Location where seed location is most critical is the periphery
- Lower Urethral dose
- Dosimetry
- Patterson Parker

Source Activity

- SmPD Total source strength required to achieve 1 Gy in the mPD
- Source strength calculated from nomograph or formula
 - **♦** Lowell Anderson
 - \bullet I-125 S = 0.014 d^{2.05} U/Gy-mPD
 - $+ Pd-103 S = 0.056 d^{2.22} U/Gy-mPD$
 - ◆ Source stength per Gy of MPD
 - \bullet I-125 S = 0.011 d^{2.2} U/Gy-MPD
 - \bullet Pd-103 S = 0.036 d^{2.56} U/Gy-MPD

Plan Evaluation

- Root mean square deviation of the peripheral dose
- PUN Peripheral Uniformity Number
 - **♦** 0.67
 - ◆ Ratio of mPD and mean peripheral dose
- CN Conformation Number
 - ◆ Ratio of volume of the PTV to the volume enclosed by the mPD isodose surface
 - **♦** 0.72

Plan Evaluation

- CI Coverage Index
 - ◆ Percentage of the target covered by the isodose level
 - ♦ 100% in plan
 - ◆ 90% in post implant dosimetry
- Three D tools
 - ◆ Visualize dose cloud and prostate
 - ◆ Adjust for minimum activity to cover
 - ◆ Margin

Prostate Volume

- Average volume implanted at UIHC 36.5 cc
- Measured by US slice area integration
- 3 Axis estimate of volume vs integrated volume
 - ◆ Average difference 6.3%
 - ◆ Maximum difference 19%
- Maximum size for implant 50-60 cc
- Larger prostates have been implanted with difficulty

Average Activity Implanted

- 100 mCi of Palladium
- 1.3 1.4 mCi per seed
- Range of seed activity 1.10 to 1.46 mCi
- 91 Seeds on average
- Range of seed number 33-127

Number of Needles

- 20 Needles average
- Range 14 to 26
- Needles on 1 cm Grid for accessibility

Isotopes

- I-125 seeds
 - ♦ 60 day half life
 - ◆ 27-35 keV x-rays and 35.5 keV gamma ray
 - ◆ 144 Gy typically prescribed (formerly 160 Gy)
- Pd-103
 - ◆ 17 day half life
 - ♦ 20-23 keV x-rays
 - ◆ 115 Gy typically prescribed

Seed Preparation

- Leak testing of seeds
 - ◆ Usually done by manufacturer
 - ◆ Check containers for residual radioactivity
- Calibration of seeds
 - ◆ 10% of seeds individually
 - ♦ 10% of seeds 5 at a time
 - ♦ Batch assay
 - **♦** Cartridge assay
 - ◆ Autoradiograph

Seed Assay

- Measure 10% of seeds individually
- Measure seeds in bulk
- Measure seeds in cartridge
- Measure several seeds and perform autoradiograph
 - ◆ ga of loading
 - ◆ seed uniformity

Seed Sterilization

- Must be done in cooperation with Nursing or ID
- Container must allow steam to reach the seeds
- Seeds are NOT self sterilized due to radiation
- Seeds may be loaded under sterile conditions
- MP should become familiar with sterile technique
- Sterilization is time limited

Seed Sterilization

- Steam sterilization
- Flash sterilization
 - ◆ 270 deg F (132 deg C)
 - ♦ 27 psi
 - ♦ 4-5 min
 - ◆ 20 min drying time
- Do not steam sterilize rapid strand
- Do not steam sterilize loaded needles

Seed Sterilization

- Steam must be able to reach seeds
 - ◆ Loosened cap or access holes
 - ◆ Cotton plug in vial
 - ◆ Care taken to prevent seeds from being evacuated from containment
- Container may be double wrapped in towels
 - ◆ Allows handling and storage

Seed Loading

- Load seeds into needles as per plan
 - ◆ Plug end of needle with bone wax or rectal suppository
 - ◆ Seeds and spacers loaded as per the plan
 - ◆ Loaded needles placed in needle box which corresponds to the plan and template
 - ◆ Loading done under sterile conditions after the seeds have been sterilized

Mick Applicator

- Seeds loaded into cartridges
- Seeds delivered loaded into cartridges
 - ◆ Reusable cartridges
 - ◆ Disposable cartridges
- Seeds calibrated in cartridges
- Seeds loaded into lunch boxes and sent for sterilization

Insertion of Seeds

- Preloaded Needles
 - ◆ Seeds loaded into needles
 - ◆ End of needle plugged with bone wax
 - ◆ Spacers (dissolvable suture) placed between seeds
 - ◆ Rapid Strand
- Mick Applicator
 - ◆ Seeds placed in cartridges
 - ◆ Mick Applicator attaches to needles

Image Guidance

- Needles seen on Ultrasound Image
- US machine places a template onto the image
- The US image's template corresponds to a physical template lying against the peritoneum
- Needles appear as bright "stars" on the US image
- The needle track is aligned at two points
 - ◆ Parallel needle tracks are obtained

OR Equipment

- Ultrasound machine
- Ultrasound probe
- **■** Implant software
- Stepper device
- **■** Template
- Stablizer device

■ Stirrups

Resultant Dosimetry

- Orthogonal films
 - ◆ Accurate Inf/Sup position of seeds
 - ◆ Tedious to identify ~100 seeds
 - ◆ Three film technique
 - ♦ LAO, RAO and AP 45 degrees apart
 - * Automated seed sort routine
 - ◆ Not correlated with anatomy

\blacksquare CT

- ◆ Inf/Sup position dependent on CT slice thickness
- ◆ Difficult to uniquely identify seeds that appear on two adjacent slices
- ◆ Automated seed localization routines
 - ◆ Elimination of duplicate seed ID
- ◆ Correlated with anatomy
- ◆ DVH

Dosimetry Evaluation

- D100, D90, D80
 - ◆ Dose to 100%, 90% and 80% of the target volume for dosimetric evaluation
- MPD
 - ◆ Matched peripheral dose used in conjunction with ellipsoidal approximation for prostate volume
- mPD
 - ◆ Minimum peripheral dose isodose surface that encompasses the planning target volume
- V200, V100, V90, V80
 - ◆ Fractional volume of the prostate target that recieves 200%, 100%, 90% and 80% of the prescribed mPD
- Dose volume histograms Target
- Dose circumference histograms Rectum & Bladder
- Dose length histograms Urethra
- V200, V100, V90, V80, D100, D90, D80, DVH, DCH, DLH, MPD and mPD
- Affected by edema (Waterman et.al.)
 - ◆ Average swelling 50% post implant
 - ◆ Average Half-life for resolution 10 days
- Time of imaging study and seed localization
 - ◆ Affects the resultant dosimetry
 - ◆ 3 week CT

Evaluation Tools for Prostate Implants

- 3 Axis post plan
- Volume comparison
- Position Histogram
- Dose Volume Histogram
- Correlation to CT
- Correlation to US
- Correlation to MRI

Radiation Safety

- GM and/or Scintillation detector available in OR
- Accounting of all seeds and needles shall be kept
- Scan all personnel and material leaving OR
- Survey each needle after withdrawal from Patient
- Patient exposure rate measured 1 m from abdomen

Patient Release

- NCRP 11 commentary (1995)
- NRC regulations Part 35.75
 - ◆ http://www.nrc.gov/NRC/CFR/index.html
- State regulations
- Effective dose equivalent to the general public
 - extstyle < 5 mSv (< 500 mrem) to the general public
 - ◆ send instructions
- \blacksquare <3 mR/hr at 1 m
 - ◆ ~0.3-0.4 mR/hr 50 cm
 - ♦ NM at 1 m
- Send home with instructions Requirement
- Not necessary to strain urine and return seeds after release
- Keep appraised of regulatory changes
- Avoid contact with pregnant women for period of time
 - ◆ 4 half lives
- Children restricted from lap for period of time
 - ◆ 4 half lives
- Sexual intercourse permitted with condom
 - ◆ 2 weeks after implant
 - ◆ Condom use for 4 half lives
- Any seeds should not be handled directly with hands or fingers.
- Use of a plastic spoon is recommended to handle seeds.
- Any retrieved seed should be stored away from people in a foil wrapped container such as a glass jar.

Equipment

- Involvement in equipment selection
- Imaging shall be verified
 - ◆ Grid pattern and template
 - ◆ Bucket of water, grid and needles
- Fluro in OR has minimal distortion
- Acceptance test of US uinit
- Applicators, accesssories, stabilizers, etc.

Treatment Planning System

- TG-43
- Check planning system results versus single seed calculation
- Check planning system with dosimetry atlas
- Check planning system with multiple seed calculation

Seed Assay

- Check dosimetry system constancy using long lived isotope
- Chamber calibrated at ADCL
- Survey meter checked before use in OR

Seeds

- National Air Kerma Strength standard
- TG-43 constants
 - ◆ Change from 160 to 145 Gy
- Anisotropy
- New seeds
- Changes in seed calibration
 - ◆ NIST

Procedure

- Physics staff in OR during procedure
- Accounting of seeds and needles
- Surveys
- Patient release

Post Implant Dosimetry

- Quantitative analysis of implant quality
- DVH's
- DSH
- DLH
- D90
- V200
- D100, D80, V100, V90, V80

Training

- 5 cases under supervision of experienced physicist
- Experienced physicist defined as one who has been involved in 20 or more cases
- Attend training course

Future Directions

- Anisotropy
- Interseed effect
- Tissue heterogeneity
- Biological models
- RBE
- Edema time course
- Differential dose planning and delivery

Future Directions

- Intra-operative seed localization and dosimetry
- Correlation of dosimetry and clinical outcomes
- New seed designs

Discussion

- Seed implants offer an alternative to surgery and external beam radiotherapy
- Advantages
 - ◆ Outpatient procedure
 - ♦ One day
 - ◆ Minimum of side effects
 - ◆ Extremely conformal treatment
- Can be used in combination with External Beam radiotherapy as a boost
- Concerns
 - ◆ Operator dependent
 - ◆ Short history in general practice
 - **♦** Cost???
- Physicist plays key role in implant
 - ◆ Planning, OR, Safety, Post implant dosimetry, Evaluation of implant, prediction of outcome, feedback to improve technique