Brachytherapy in the Image-guided IMRT Era

Jeffrey F. Williamson, Ph.D.

and the Brachytherapy-IMRT Team
M. Fattyga, N Dogan, M. Hagan, and D. Todor

Outline
BT in IG-IMRT Era

- Evolution of medical practices: a Darwinian struggle
- Brachytherapy (BT) vs IMRT
 - Geometric uncertainty
- The future: integrated BT-IMRT
- Scientific/Clinical Challenges

Dynamics of a Successful Therapeutic Modality

- 1910-1940s: BT is sole RT modality for giving curative doses to deep tumors
 - 1930s: 80,000 procedures/yr. 100 Gy doses common
- Competitive Threats to BT: Example 1950s
 - Rigid Radium needles => radiation hazards and steep learning curve
 - Competition: MV EB and improved surgical techniques
 - Solution: manual afterloading, flexible catheters, and Iridium seeds
- Exploiting technological opportunity to address clinical needs => BT retains competitive edge
- Future competitor ??: Image-Guided IMRT

BT: High Doses with Acceptable Toxicity

- HDR BTx-EB Kiel-Beaumont-Seattle Experience
 - Intermediate risk prostate Ca
 - TRUS-guided HDR interstitial BTx
 - 2 x (9-11.5 Gy) to prostate
 - EB: 40-50 Gy whole pelvis
- Equivalent doses (NTD_{1.8 Gy}) for \(\alpha/\beta = 3\)
 - Prostate: 90 – 116 Gy
 - Peripheral zone: 150 Gy
 - 5 year results: bNED = 88%, G3 toxicities = 3-4%
- Highest reported EB-only NTD_{1.8 Gy} = 86 Gy

(Radiumhemmet, Stockholm: 1945)
Brachytherapy (BT) vs. External Beam (EB)

- Observation: BT can deliver higher doses to CTV/GTV than EB for same toxicity level
- Possible Explanations
 - LDR = hyperfractionation ⇒ ↑ normal tissue repair
 - BT is inherently more conformal than even best IMRT or 3DCRT
 - BT has superior geometric targeting accuracy: ↓ PTV margin is needed to assure CTV coverage
 - BT central hotspots confer biological advantage

BTX vs. IMRT Transverse Plane Conformality

- Dose 1 cm outside CTV
 - IMRT: 57%
 - HDR: 37%
 - Pd-103: 25%
- IMRT: 5-fold more normal tissue receives dose >75% of prescribed dose

Why use BT in the IMRT era?

- IMRT can support dose conformity and normal tissue avoidance comparable to BT
 - Noninvasive
 - Not limited to surgically accessible target volumes
 - Can treat extended target volumes
 - Better CTV dose homogeneity
 - Less deformation of pre-treatment anatomy
- If Image-Guided Adaptive Radiation Therapy (IGART) improves targeting accuracy, why use BT?

IMRT: Geometric Uncertainty

- IMRT Setup and internal tissue motion errors
 - Interfraction systematic: errors persisting during entire RT course
 - Interfraction Random: Fx-to-Fx fluctuations
 - Intrafraction motion: breathing
- Error magnitude
 - Prostate:
 » σ, Σ = 2-3 mm
 » 25%-35% of patients have errors > 5 mm
 » 11 mm PTV margins are needed to achieve adequate CTV coverage for 90% of patients
 - Cervical Cancer: 15 mm margins
 - NSCLC: > 20 mm margins
Adaptive Radiation Therapy: Yan et al.

- 5 Serial CT’s during 1st week
- New PTV
- Single off-line correction for tissue motion & setup error
- Mean PTV reduction: 24%

Normal Tissue Sparing and Image-guided IMRT

- Prostate: PTV Margins required
 - Conventional RT: 11 mm
 - Offline setup correction: 9.3 mm
 - Offline correction: setup + organ motion: 7.5 mm
 - Beaumont-style ART
 - Online setup: 8.4 mm
 - Online setup + offline organ: 6.0 mm
 - Online setup + organ motion: 3-4 mm
- Other sites: cervix and lung require larger PTV margins: 15-20 mm

Permanent Prostate Implants
Planned (TRUS) vs delivered (Post Op CT) seed locations

- Available data (Roberson 97, Tascherau 99) $\Rightarrow \sigma \approx 3$ mm/axis
 - Systematic vs. random not clearly measured
 - Confounding factors: prostate edema and CT vs. TRUS discrepancies
- 3-4 mm random seed errors dose \Rightarrow error < 5%
- HDR stainless steel needle delivery error \approx 2-3 mm

HDR TRUS Guided Interstitial Brachytherapy

- Geometric uncertainty
 - Needles guided by intraoperative imaging, not external landmarks
 - Systematic needle offset unlikely
 - As tissue moves, sources move $\Rightarrow \Sigma_{\text{MC}} \approx 0$
 - ICRU 58: PTV margins not recommended: PTV = CTV
- Largest uncertainty
 - TRUS probe removal & interfraction patient repositioning errors
 - Solution: image with CT and reoptimize before each fraction
 - Compensate for needle positioning error by introp optimization: Final planned dose \approx HDR delivered dose
Single-Fx HDR vs. IMRT vs. IGART

- **Observation:** HDR BT can give far larger doses than IMRT for given level of complications
- **Explanatory hypothesis:** No PTV margin ⇒ bladder/rectal dose avoidance
- **Method:** Use BED and gEUD/EUD outcome models to compare equivalent treatments
 - IMRT with 10 mm margins: $D_{98} = 9 \times 2.2 \text{ Gy}$
 - Idealized IGART- no margins: $D_{98} = 9 \times 2.2 \text{ Gy}$
 - HDR with no margins: $D_{98} = 1 \times 9 \text{ Gy}$

Case 2: Iso-BED (100% = prescribed)

Late Rectal BED-Volume Histograms
HDR vs. IGART and HDR vs IMRT-U

Mean gEUD and EUD
- HDR Tumor EUD: 26% Larger than IMRT or IGART
- G2/3 rectal ($a = 4.4$): HDR < IGART < IMRT
- G3/4 rectal ($a = 8.3$): HDR \approx IGART < IMRT
- Bladder ($a = 7.7$): IGART < IMRT < HDR
Conclusions: Prostate

• HDR BTx + IMRT: improved therapeutic ratio
 – BTx: smaller geometric uncertainty than current IMRT
 – BTx: may have therapeutic ratio competitive with best practical IGART

• Current clinical data: BTx + EB tolerable dose escalation much larger than IMRT alone

• Problems
 – LQ parameter uncertainty ⇒ 10% uncertainty in equivalent IMRT dose escalation
 – Deformable image registration needed to reduce registration uncertainties to 2 mm

Integrated BT-IMRT

• HDR BT Therapeutic ratio > IMRT
 – Explanation: superior BT targeting accuracy ⇒ smaller margins
 – BT competitive with best achievable IGART

• Prostate: Combined IG-IMRT and IG-BT
 – IG-IMRT: Escalate dose to +/-elective PLNs
 – BT: Escalate primary tumor dose
 – Escalated dose/fraction exploits low α/β ratio
 – Further gains: plan IMRT to compensate for HDR hot and cold spots

• Cervix: IG-IMRT to boost intracavitary BT GTV coldspots and to avoid BT normal tissue hotspots

VCU IMRT Dose Escalation protocol

Intermediate Risk Prostate Cancer

• 1 x 6 Gy HDR prostate only
• 28 IMRT Fx’s to PLN and prostate
• Online EPID setup to Au markers
• 5 mm PTV margins

• CTV (Prostate + 5 mm): 61 Gy (NTD_{1.8Gy} = 77 Gy)
• Elective PLN: 50 Gy (NTD_{1.8Gy} = 50 Gy)
• 30 patients: No G2/3 toxicity observed yet

Technical Challenges: Integrated BT-IMRT

• Few quantitative studies of BT geometric errors
 – Serial imaging, contour delineation, real-time planning

• Improved compensation for BT-induced organ deformation and tissue displacement
 – Validation/development of robust deformable image registration

• Planning issues
 – Accuracy of BED and other isoeffective doses to account for fractionation effects
 – Cumulative BED (IMRT + EB) planning and managing residual geometric uncertainty

Results: Patient 2

<table>
<thead>
<tr>
<th>Template T_i</th>
<th>Deformed T_i</th>
<th>Target T_c ICT 1</th>
<th>Deformed Grid</th>
</tr>
</thead>
<tbody>
<tr>
<td>A to C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E to C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dose Matrix Deformation

\[
D_{\text{tot}}(x) = D_C(x) + \sum_{i \in \{A, B, D, E\}} D_i \left(\tilde{R}_{IC}(x) \right)
\]

Linear-Quadratic Model

Biologically Effective Dose =

\[
\text{BED} = \frac{D_{\text{tot}}}{1 + \left(\frac{d}{\alpha/\beta} \right)}
\]

- \((\alpha/\beta)\) thought to be 1.2 – 3 Gy
 - Fowler/Brenner: permanent implants vs. 3DCRT outcome data
 - Brenner/Thames: Martinez HDR-WP outcome data
 - 23 x 2 Gy WP + BTx from 3 x 5.5 Gy to 2 x 11.5 Gy
- LQ permits addition of BTx + IMRT

Patient 3: Cumulative Dose Fluid Transform

bNED Dose Response vs \(\alpha/\beta\)

- Selected \(\alpha/\beta = 3\)

- 5 Year bNED rates
 - BT: Martinez (IJROBP 53: 316) Demanes (IJROBP 61: 1306);
 - 3D CRT: Fowler (IJROBP 50: 1021); Levegrun/Bx MSK: (IJROBP 51: 1064); Zaloudek/Bx Gy
bNED Dose Response vs α/β

- lower α/β values ⇒
 - ↑ discordance between IMRT+BTx and IMRT trials
 - ↑ relative importance of BTx relative to IMRT
- 1.5-3.0 α/β range ⇒ 10% uncertainty in total NTD

Conclusions

- BT: important therapeutic tool for 100 years
 - Competing modalities: Market favors those who perform basic research to retain competitive advantage
- Image-guided IMRT vs HDR BT PTV margins
 - Real-time replanning on Tx position CT images: better than feasible IGART??
- Solutions
 - Measure geometric uncertainty of BT vs EB
 - Develop BT techniques that exploit ↓ uncertainty
 - Exploit complementary strengths of BT and IGART via integrated planning