AbstractID: 4969 Title: Mechanical Accuracy of A Robotic Couch

Purpose: To take full advantage of image guided radiation therapy (IGRT), the target shifts must be done accurately and efficiently. Recently, University of Florida, Radiation Oncology Department has implemented Medical Intelligent HexaPODTM 6D Robotic Treatment CouchTOP. The purpose of this study is to determine the accuracy and efficiency of the HexaPODTM CouchTOP system.

Materials and Methods: The accuracy and efficiency of HexaPODTM CouchTOP system were evaluated and compared with those of Varian and Elekta couch systems. All three couch systems were displaced in all three Cartesian coordinates and measured by BrainLab ExacTrac infrared (IR) camera system. To determine the efficiency of each couch system, average time spent for couch adjustment was recorded. Since HexaPODTM system can be rotated with respect to three Cartesian axes, the rotation angular movement was evaluated for the HexaPODTM system. Because the HexaPODTM couch's default pivot point is not located at linear accelerator's isocenter, a user defined pivot point had been determined using a simple mathematical relationship.

Results: For the average time of couch adjustment, 25 sec/1-direction, 60 sec/1-direction and < 20 sec/3-direction were obtained for Varian, Elekta and HexaPODTM couch systems, respectively. The average displacement differences in lateral direction for Varian, Elekta and HexaPODTM were 0.33 ± 0.21 , 0.33 ± 0.21 and 0.09 ± 0.11 mm, respectively. Similar results were observed for longitudinal and vertical directions. For roll angular movement, HexaPODTM CouchTOP system was observed to be $0.01 \pm 0.01^{\circ}$. Similar results were seen for both pitch and yaw angular directions.

Conclusion: It is concluded that HexaPODTM CouchTOP system has the capability to make target shifts to the accuracy of within sub-millimeter and sub-degree with efficiency.