Diagnostic X-Ray Shielding

Multi-Slice CT Scanners
Using NCRP 147 Methodology

Melissa C. Martin, M.S., FAAPM, FACR Therapy Physics Inc., Bellflower, CA

> AAPM Annual Meeting, Orlando, FL Refresher Course Thursday, August 3, 2006 8:30 am

Acknowledgement

Slides Courtesy of:

S. Jeff Shephard, M.S., DABR M.D. Anderson Cancer Center, Houston, TX

Ben Archer, Ph.D, FACR
Baylor College of Medicine, Houston, TX

Nomenclature for Radiation Design Criteria

Required thickness = NT/Pd² where:

N = total no. of patients per week

T = Occupancy Factor

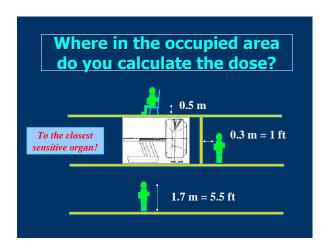
P = design goal (mGy/wk)

d = distance to occupied area (m)

Shielding Design Goal (Air Kerma):

Uncontrolled Areas

Annual: P = 1 mGy per year Weekly: P = 0.02 mGy per week


Controlled Areas

Annual: P = 5 mGy per year Weekly: P = 0.1 mGy per week

Distance (d)

The distance in meters from either the primary or secondary radiation source to the occupied area.

New recommendations in Report 147 for areas above and below source.

Recommended Occupancy Factors for Uncontrolled Areas:

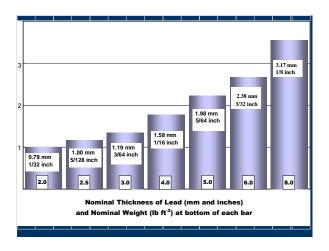
T=1 Clerical offices, labs, fully occupied work areas, kids' play areas, receptionist areas, film reading areas, attended waiting rooms, adjacent x-ray rooms, nurses' stations, x-ray control rooms

<u>T=1/2</u> Rooms used for patient examinations and treatments

<u>T=1/5</u> corridors, patient rooms, employee lounges, staff rest rooms

T=1/8 corridor doors

Recommended Occupancy Factors for Uncontrolled Areas:


T=1/20 public toilets, vending areas, storage rooms, outdoor area with seating, unattended waiting rooms, patient holding areas

T=1/40 minimal occupancy areas; transient traffic, attics, unattended parking lots, stairways, janitor's closets, unattended elevators

Equivalency of Shielding Materials Table 4.8 Page 67 Steel thickness requirement: 8 × Pb thickness requirement Gypsum wallboard thickness requirement: 3.2 × concrete thickness requirement: Plate Glass thickness requirement: 1.2 × concrete thickness requirement Light-weight concrete thickness requirement:

1.3 × std-weight concrete thickness

requirement

Multi-Slice Helical CT Shielding

- Larger collimator (slice thickness) settings generate more scatter
 - Offsets advantages of multiple slices per rotation
 - Environmental radiation levels typically increase
- Ceiling and floor deserve close scrutiny

Problem

Question:

Do I really need to put lead in the ceiling of a 16-slice CT scanner room?

Method

- Calculate the unshielded weekly exposure rate at 0.5 m beyond the floor above.
 - Find the maximum weekly exposure at 1 m from isocenter and inverse-square this out to the occupied area beyond the barrier.
- Apply traditional barrier thickness calculations to arrive at an answer.
 - Occupancy, permissible dose, attenuation of concrete, etc.

NCRP 147 DLP Method

■ Weekly Air Kerma at 1m (K¹_{sec})

$$K_{sec}^{1}$$
 (head) = κ_{head}^{*} DLP
 K_{sec}^{1} (body) = 1.2 * κ_{body}^{*} DLP

$$\begin{array}{l} \kappa_{head} = \, 9x10^{\text{-5}} \, \, ^{\text{1}}\!/_{\text{cm}} \\ \kappa_{body} = \, 3x10^{\text{-4}} \, \, ^{\text{1}}\!/_{\text{cm}} \end{array}$$

Use inverse square to find unshielded weekly exposure at barrier from ${\rm K}^{1}_{\rm sec}$

NCRP 147 DLP Method

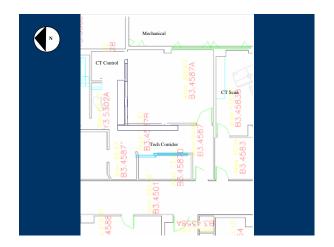
DLP (Dose-Length Product)

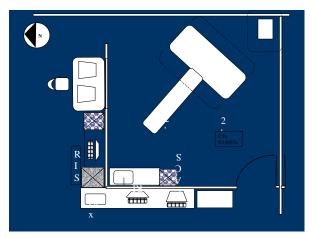
- $= CTDI_{VOL} * L$
 - $extbf{CTDI}_{VOL} = CTDI_{W}/Pitch$
 - CTDI_W = 1/3 Center CTDI₁₀₀
 - + 2/3 Surface CTDI₁₀₀ (mGy)
 - L = Scan length for average *series* in cm
 - Units of mGy-cm
- = $[1/_3 \text{ CTDI}_{100, \text{ Center}} + 2/_3 \text{ CTDI}_{100, \text{ Surface}}] * \text{L/p}$

NCRP 147 DLP Method

Procedure	CTDI _{vol} (mGy)	Scan Length (L) (cm)	DLP* (mGy- cm)
Head	60	20	1200
Body	15	35	525
Abdomen	25	25	625
Pelvis	25	20	500
Body (Chest, Abdomen, or Pelvis)			550

^{*} Double the value shown for w/wo contrast


Example


- 180 Procedures/week
 - 150 Abdomen & Pelvis
 - 30 Head
- 40% w&w/o contrast
- 13' (4.2 m) ceiling height (finished floor to finished floor)
- GE LightSpeed 16

Preliminary Information

- Architectural drawings (Plan view) of exam room, floor above, and floor below
 Elevation sections through scanner location for floor and ceiling
- Occupancy factors for floors above and below
 Two rooms away for possibility that remote areas may be more sensitive than adjacent areas
 Composition of walls, ceilings and floors

- Materials and thicknessScanner placement from vendor
 - Distance from scanner to protected areas beyond barriers

Unshielded Weekly Exposure at Barrier

Air Kerma/procedure at 1m (K¹_{sec})
 40% w&w/o contrast

$$\begin{array}{l} \text{K1}_{\text{sec}} \text{ (head)} = \kappa_{\text{head}} * \text{ DLP} \\ = 1.4 * 9 \text{x} 10^{\text{-}5} \text{ cm}^{\text{-}1} * 1200 \text{ mGy-cm} \\ = 4.9 \text{ mGy} \\ \text{K1}_{\text{sec}} \text{ (body)} = \kappa_{\text{body}} * \text{ DLP} \\ = 1.4 * 1.2 * 3 \text{x} 10^{\text{-}4} \text{ cm}^{\text{-}1} * 550 \\ \text{mGy-cm} \\ = 41.6 \text{ mGy} \end{array}$$

Unshielded Weekly Exposure at Barrier

- Weekly Air Kerma (K_{sec}) at Ceiling:
 - 30 head procedures/wk
 - 150 body procedures/wk
 - $D_{sec} = 4.2 \text{ m} + 0.5 \text{ m} 1 \text{ m} = 3.7 \text{ m}$

$$K_{sec}$$
 (head) = 30 * 4.9 mGy * (1m/3.7m)²
= 0.36 mGy

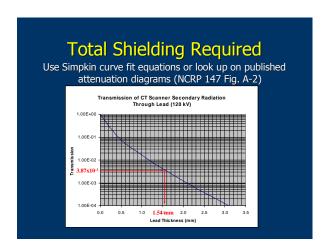
$$K_{sec}$$
 (body) = 150 * 41.6 mGy * (1m/3.7m)²
= 3.04 mGy

Unshielded Weekly Exposure at Barrier

■ Weekly Air Kerma (K_{sec}) at Ceiling:

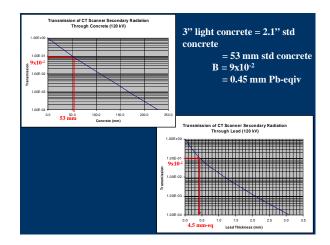
$$K_{sec}$$
 (Total) = K_{sec} (head) + K_{sec} (body)

 K_{sec} (Total) = 0.36 mGy + 3.04 mGy


 K_{sec} (Total) = 3.40 mGy

Required Transmission (B)

$$B = \frac{P}{V * T}$$


P = Maximum permissible weekly exposure

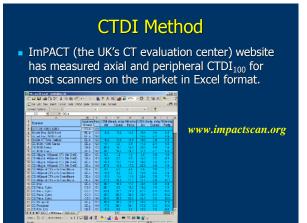
T = Occupancy Factor

Existing Shielding

- Measure existing attenuation in walls with Tc-99m source and Na-I detector (determine leadequivalence – usually 0.1 mm Pb-eq)
- Floors and ceilings
 - Find lead equivalence from documentation of concrete thickness.
 - Find thickness by drilling a test hole and measuring.
 - Always assume light weight concrete, unless proven otherwise (30% less dense than standard density, coefficients used in NCRP 147)

Existing Shielding

- Subtract existing lead-equivalence from total required
- Convert to 1/32 inch multiples (round up)

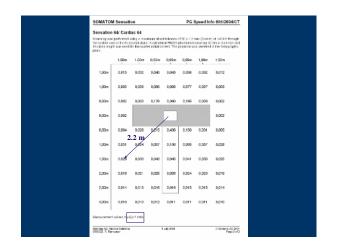

Total lead to add = (Total required) - (Existing)

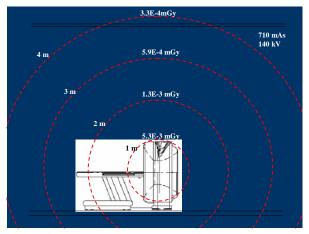
= 1.54 mm - 0.45 mm

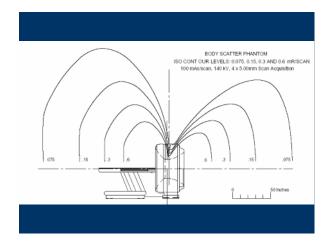
= 1.1 mm

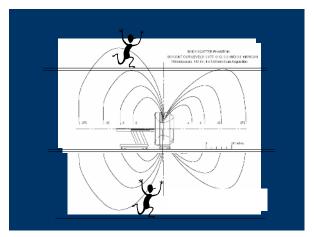
Round up to 1/16" Pb Additional Lead required

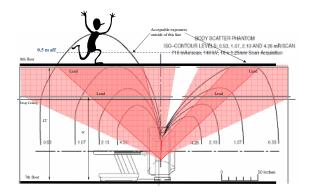
CTDI Method

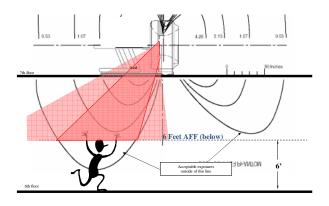

Calculate K^1_{sec} for head and body separately, then combine with weighting factors depending on percentage of total workload.


$$K_{s}^{^{1}}\left(total\right) = \frac{\% \; heads * K_{s}^{^{1}}\left(head\right) + \% \; body * K_{s}^{^{1}}\left(body\right)}{100\%}$$


Finally, inverse-square this exposure out to each area to be protected.


Isodose Map Method


- Assume an isotropic exposure distribution based on the maximum exposure rate in the vendor-supplied exposure distribution plots (approx. 45° to the scanner axis).
- Overestimates shielding needed in the gantry shadows and the shadows of the patient.



Comparison of Methods								
	DLP		CTDI ₁₀₀		\ Isodose			
	Head	Body	Head	Body	Head	Body		
K ¹ _{sec}	4.9	41.6	0.2	5.0	12	151		
Combined Weekly Exposure at Ceiling	3.4 mGy		0.38 mGy		10 mGy			
Add Lead	1/16"		1/32″		3/32″			

Shielding References

- Simpkin, DJ, Transmission of scatter radiation from computed tomography (CT) scanners determined by a Monte Carlo calculation. Health Physics 58(3):363-367, 1990.
- Dixon, RL and Simpkin, DJ. New Concepts for Radiation Shielding of Medical Diagnostic X-ray Facilities. In Proceedings of the 1997 AAPM Summer School.
- NCRP (2005), National Council on Radiation Protection and Measurements. Structural Shielding Design for Medical X-Ray Imaging Facilities, NCRP Report #147 (National Council on Radiation Protection and Measurements, Bethesda, Maryland)

Contact Information

Melissa C. Martin, M.S., FACR, FAAPM Certified Medical Physicist Therapy Physics Inc.

9156 Rose St., Bellflower, CA 90706

Office Phone: 562-804-0611
Office Fax: 562-804-0610
Cell Phone: 310-612-8127

E-mail: MelissaMartin@Compuserve.com