AbstractID: 6609 Title: Dosimetric evaluation of penumbra for conformal and intensity modulated radiotherapy

Purpose:

To evaluate the penumbral characteristics as function of collimation systems, conventional detector, depth, energy and MLC travel orientations using diode detectors.

Methods and Materials

The experiment was carried out in a Clinac 2300C/D linear accelerator for 6 and 15 MV. For penumbral width determination, crossbeam profiles were measured using Blue phantom radiation field analyzer, 0.13 cm^3 ionchamber and diode detectors, CU-500E dualchannel electrometer and OmniPro beam-data acquisition system. The penumbra was measured for both Jaw and MLC-defined field sizes of 4x4 to $30x30 \text{ cm}^2$ depths at dmax, 5, 10, 15 and 20cm and also for cross-plane and in-plane MLC travel orientations at 100cm SSD. The penumbra width was calculated as the distance between 80%-20% intensity in the profiles. **Results**

The MLC penumbra was in the range of 3.6mm to 4mm for 6MV and 5.4mm to 7.1mm for 15MV at d_{max} depth for field sizes of 4x4 to 30x30cm² as measured by diode detector. The mean differences between Jaw and MLC-defined field's penumbra were 0.8mm \pm 0.2, and 1mm \pm 0.2 for 6MV and 1.2mm \pm 0.2 and 1.8mm \pm 0.5 for 15MV at d_{max} and 10cm depths. The maximum difference of 1.9mm \pm 0.3 for 6MV and 2.2mm \pm 0.2 for 15MV between diode and 0.13cm³ detectors were found. Use of diode detectors, maximum differences of 3.4mm \pm 3 at 20cm depths between energies and the differences of 3.3mm \pm 2.2 for 6 MV and 1.2mm \pm 0.3 for 15MV between cross-plane and in-plane MLC penumbra were found.

Conclusions

The rounded-end MLC penumbra was larger as compared to Jaw penumbra. The penumbra measured by diode was increasing with energy upto a certain depths and field sizes and then it increases more with low-energy at larger depths and field sizes as compared to high-energy. The adequate accounting of penumbra is important in intensity modulated beam dose calculation.