Title:
Measurement of the mechanical isocenter of a proton gantry

X. N. Ding PhD, M. Bues PhD, M. P. Zhu, MS, R. Gaza PhD, A. R. Smith Ph. D. Department of Proton Therapy, University of Texas MD Anderson Cancer Center, Houston, TX 77030

Purpose:
To investigate a method to analyze the position and accuracy of the gantry mechanical isocenter in a proton gantry. The outcome measurements can be incorporated into a couch correction algorithm to compensate for gantry imperfections.

Materials and Methods:
A 2-inch steel sphere is fastened to the patient couch, close to the mechanical isocenter of a proton gantry. An assembly of 3 mutually perpendicular dial gauges touching the surface of the steel sphere and 5 clinometers is attached to the proton snout. The 210 ton Hitachi proton gantry, installed at the MD Anderson Proton Therapy Center in Houston, Texas, is rotated with speeds of 1 revolution and 0.5 revolutions per minute in clockwise and counterclockwise directions. Simultaneously dial gauge data and clinometer data are recorded on a personal computer using software designed for the purpose of this project. The mechanical isocenter and its uncertainty are obtained by analyzing the trajectory of the dial gauge tips as a function of gantry angle.

Results:
Our measurement results show the isocenter of the Hitachi proton gantry having an uncertainty sphere within 0.8 mm, and with little hysteresis effect (0.03 mm) when the gantry makes a full rotation.

Conclusion:
Our method successively demonstrated the ability to accurately determine the mechanical isocenter and its uncertainty.